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Interactive proofs

Prover Isx € L? Verifier

Perfect completeness: For every instance x € L,

Pr [(P(x,w), V(x)) = 1| = 1.

Soundness: For every instance x & L and adversary P,

Pr [(13, V(x)) = 1] < e(x).
Basic efficiency metric: COMMUNICATION COMPLEXITY (number of bits exchanged during the interaction).

Limitation: NP-complete languages do not have IPs with cc << |w | (or else the language would be easy).



Interactive arguments

Interactive proofs with computational soundness

Prover Isx € L? Verifier

V(14 x)

o relaxes the
&/ soundness guarantee
% of interactive proofs

Computational soundness: For every x & L, security parameter 4 € N, and 7,z5-bounded adversary P,

~ p B | |
Pr [<P , V(1% x)) = 1] < €arG(4s X, TARG): Further relaxation: Expected-time

computational soundness € -
Limitations on the communication complexity of interactive proofs no longer hold. against adversaries with bounded

expected running time ¢ .

AMAZING: there exist interactive arguments for NP with cc < |w| (given basic cryptography)

These are known as Succinct Interactive Arguments.



Why study succinct interactive arguments?

A fundamental primitive known to exist assuming only simple cryptography (e.g. collision-resistant hash functions).

The savings in communication (cc << |w|) or even verification (time(V) < | w|) are remarkably useful.

Succinct arguments play a key role in notable applications
(e.g., zero-knowledge with non-black-box simulation, malicious MPC, ...).

They also serve as a stepping stone towards succinct non-interactive arguments (SNARGs).

Recall: SNARGs for NP cannot be realized via a black-box reduction to a falsifiable assumption [GW11].

Often (though not always): SNARG = succinct interactive argument + non-falsifiable assumption / idealized model

Kilian's protocol, the first and simplest succinct argument



[Kilian92]

JL 5 I bstraction f o ’ t
Kilian’s protoco s o
-

Building block #1: probabilistically checkable proof (PCP) Building block #2: vector commitment scheme (VC)
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Check(cm, Q,ans,pf) =1 |<eyc

. Check(cm, Q’, ans’, pf’) = 1

----------------------------------------------------------------------------------------------------
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Fundamental question:
What is the security of Kilian’s protocol?




What is the security of Kilian’s protocol?

Prover P(x,w) M Commitment to a PGP string with [Merkle free

Verifier V(x)

p: PCP verifier randomness

\, ans, pf):

Query set, answers, and their authentication paths

v

Previously:

» Folklore: well-understood, if €p-p and €y, if negligible, then €, is negligible.

s . . . non-trivial restrictions on the PCP.
* [Kilian92] gives an informal analysis.

« [BGO8] proves security of Kilian’s protocol assuming the underlying PCP is non-adaptive and reverse-samplable.
Their analysis is NOT tight: roughly €xrg < 8 - €pcp + 1/ €y (multiplicative constant overhead).

 Kilian's protocol is widely used across cryptography but lacks a security proof in the general case.



A similar protocol: Schnorr identification scheme

Prover P((G, p, g,h), w) g, Verifier V(G, p, g) '

f: random challenge in Zp

p |%4

y=w-f+rmodp

Numerous works study the security of Schnorr identification and its variants in different settings
Sho97,PS00,BP02,FPS20,BD20,RS21,SSY23]
Yet, there are gaps in our understanding of Schnorr’s protocol - challenging open questions

Our contribution:

- Proving the security of Kilian’s protocol is as hard as that of Schnorr’s protocol.
- Is Kilian’s protocol really “well-understood”?

- A general and tightest known security analysis of Kilian’s protocol.
- Gaps and barriers remain.



Our results

Upper Bounds.
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: PCP for language L with Vector commitment scheme with

- proof length / , ARG := Kilian[PCP, VC] : position binding error €, _
P query complexity q : : (or expected-time position binding error 6\’;(:)
: - soundness error €pcp : ek aseeassseamssseasssEamssesmsseEassssanssssnnnenannsnnnnnnnnnans’ ’

L 4 *
L/
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Forevery x & L and € > 0,

Earg(4s X, targ) < E€pcp(X)+eyc(4, tyc)+e€, where tye = O (tARG -1/ 6);
€xrc(As X, 1550) < €pcp(X)+€7-(4, 1)) +€, where 17~ = O (tKRG - log(q/ 6)).

Lower Bounds. Bounding the soundness error of Kilian’s protocol is as hard as that of the Schnorr identification scheme.

There exists PCP and VC such that, for every x & L,

€Schnorr(/19 tSchnorr) < €ARG(/19 A, tARG)’ where tARG — O(tSchnorr);
* * * * * _ *
€Schnorr(/1’ tSchnorr) < €ARG(/1’ X, tARG)’ where tARG o O(ISchnorr)'




How tight are the bounds?

Strict-time setting.
- Setting €p; o4, 1) < O(t*124).
- Best known analysis of the Schnorr identification scheme:

2 A '
€Schnorr(/19 tSchnorr) < \/GDLOG(/L O(tSchnorr)) <0 <\/tSchnorr/2 ) Polynomial gap
- Our bound:

€arc(ds X, tara) < 274 + €p 06y targ - U/€) +€ <2744+ 2P . O (\3/ t,iRG/zﬂ).

Expected-time setting.
- Best known analysis of the Schnorr identification scheme:

* * * *
€Schnorr(/1’ tSchnorr) < €DLOG(/1’ O(tSchnorr))'

Polylogarithmic gap

Almost tight

- Our bound:
X (A X Targ) < 274+ €3 0o 1irg - log(ale)) + €.
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On the price of rewinding

Goal: achieve €, = 2" against adversaries of size 2°" for Kilian's protocol.

Standard model =0 (i 4 ) :  Random oracle model
VC - ARG : . % I3
Forevery x & L and e > 0, orevery A ’ 2 [CY24]
€xra(ds X, Targ) < Epep(X) + eya(d, [(X), g(X), fye) + €. L Eara(h X farg) < Epcp(x) - A;G

* SUPPOSE €prp = 24 with [ = 2%, e SUPPOSE €Epcp = 242
toc . 2
. Suppose ey = (4,1, 9, tyc) < N (achieved by ideal Merkle trees). : , eye < % — ~120-4
. Setting € := 2% .« Set(4 = 162to achieve the desired bound.

230
30
S tbye 4 S ARG S AR Nt
- If the hash function is assumed ideal then extraction is straightline.

80 2
(27 - tARG) — 9l60-4 2  _ 1280-2 - If the hash function is merely collision-resistant then extraction is rewinding.
2 ARG These computations illustrate the PRICE OF REWINDING.

e Set A £ 322 to achieve the desired bound.

_ €\/QS
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Our followup: Quantum Rewinding for IOP-Based Succinct Arguments

Alessandro Chiesa, Marcel Dall’Agnol, Zijing Di, Ziyi Guan, Nick Spooner

Quantum Rewinding for IOP-Based Succinct Arguments

Alessandro Chiesa, Marcel Dall Agnol, Zijing Di, Ziyi Guan, Nicholas Spooner

We analyze the post-quantum security of succinct interactive arguments constructed from interactive oracle proofs (IOPs) and vector commitment schemes. We prove that
an interactive variant of the BCS transformation is secure in the standard model against quantum adversaries when the vector commitment scheme is collapsing. Our
proof builds on and extends prior work on the post-quantum security of Kilians succinct interactive argument, which is instead based on probabilistically checkable

proofs (PCPs). We introduce a new quantum rewinding strategy that works across any number of rounds. As a consequence of our results, we obtain standard-model
post-quantum secure succinct arguments with the best asymptotic complexity known.

Thank you!
https.//eprint.iacr.org/2024/1434
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https://arxiv.org/abs/2411.05360

