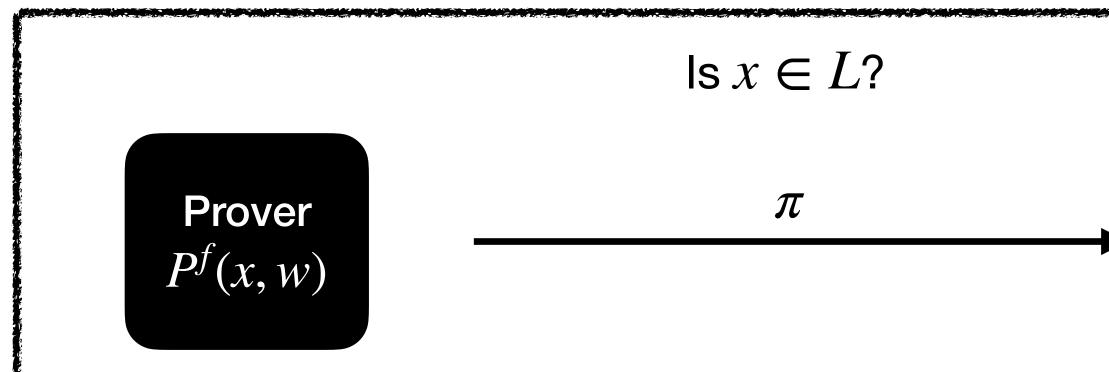
Relativized Succinct Arguments in the ROM Do Not Exist Annalisa Barbara, Alessandro Chiesa, Ziyi Guan Bocconi EPFL

https://eprint.iacr.org/2024/728

Succinct non-interactive arguments **SNARGs in the ROM**



Completeness: \forall instance-generating adversary A, $f \leftarrow f$

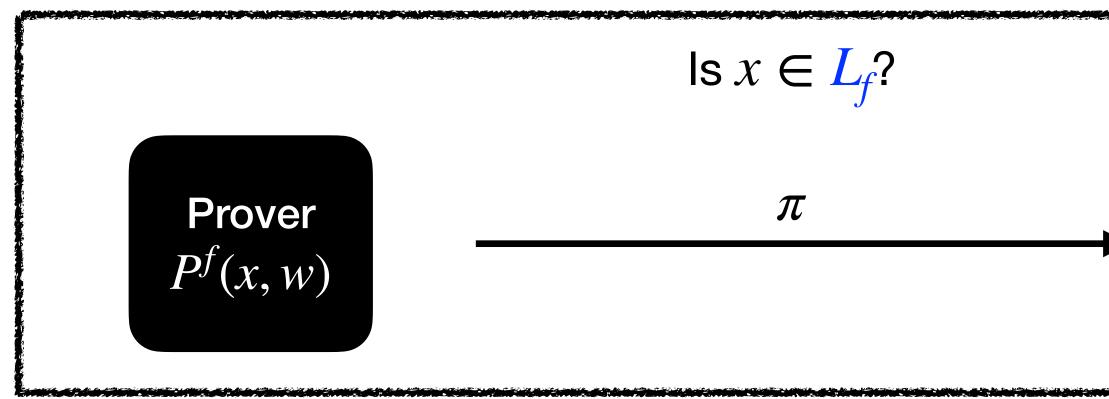
$$\Pr \left| \begin{array}{c} x \in L \land V^{f}(x, \pi) = 1 \\ \pi \leftarrow \end{array} \right|$$

Soundness: \forall query-bounded and time-bounded adv Pr $x \notin L \wedge V^{f}(x, \tilde{\pi}) = 1$ $\begin{cases} f \leftarrow \mathcal{O} \\ (x, \tilde{\pi}) \end{cases}$

Random oracle
$$\mathcal{O} := \{\mathcal{O}_{\ell}\}_{\ell \in \mathbb{N}}$$

uniform distribution over all functions $f: \{0,1\}^* \to \{0,1\}^{\ell'}$

What is a relativized argument in the ROM? Relativization: The language L is relativized, $L = \{L_f : f \in \mathcal{O}\}$. e.g. $L_f := \{(x, y) : y = f(x)\}$



Completeness: \forall instance-generating adversary A,

Pr
$$x \in L_f \land V^f(x, \pi) = 1$$
 $\begin{array}{c} f \leftarrow \\ x \leftarrow \\ \pi \leftarrow \end{array}$

Soundness: \forall query-bounded and time-bounded ad

$$\Pr\left[x \notin \underline{L}_{f} \wedge V^{f}(x, \tilde{\pi}) = 1 \right| \begin{array}{l} f \leftarrow 0 \\ (x, \tilde{\pi}) \end{array}\right]$$

Random oracle $\mathcal{O} := \{\mathcal{O}_{\ell}\}_{\ell \in \mathbb{N}}$

uniform distribution over all functions $f: \{0,1\}^* \to \{0,1\}^{\ell'}$

$$\begin{bmatrix} \mathcal{O} \\ A^{f} \\ P^{f}(x) \end{bmatrix} = 1.$$

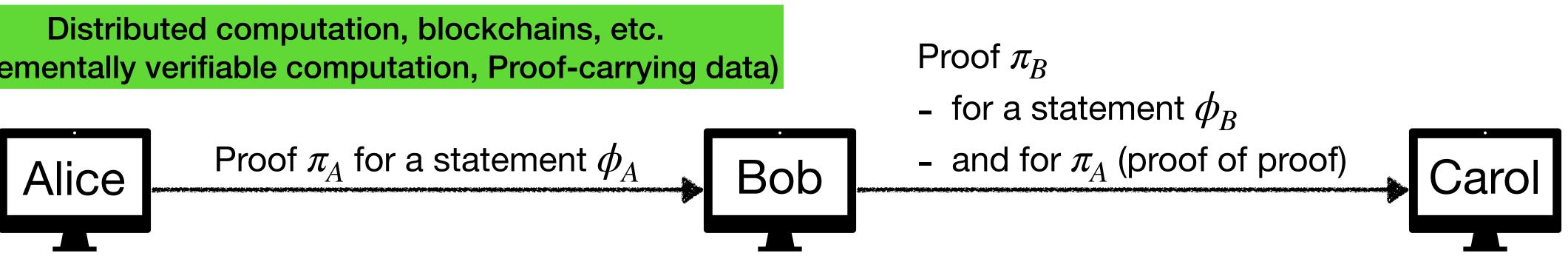
$$\begin{bmatrix} P^{f}(x) \end{bmatrix}$$

$$\begin{bmatrix} Versary \tilde{P}, \\ \mathcal{O} \\ \leftarrow \tilde{P}^{f} \end{bmatrix} \leq \epsilon.$$

$$\begin{bmatrix} \mathcal{O} \\ \mathcal{O} \end{bmatrix} \leq \epsilon.$$

Why study relativized arguments? [1/2] **Motivation 1: Verifiable distributed computation**

Distributed computation, blockchains, etc. (Incrementally verifiable computation, Proof-carrying data)



How does Bob produce π_R ?

Oracle recursive circuit $\mathscr{C}^{f}(\phi_{B}, (\phi_{A}, \pi_{A}))$ - Check that ϕ_B is correct;

- Check that $V^{f}(\mathscr{C}, \phi_{A}, \pi_{A}) = 1$.

$$\mathsf{CSAT}_{f} := \{ (C, x) : \exists w, C^{f}(x, w) = 1 \}$$

Let ARG = (P, V) be a SNARG for relativized CSAT:

$$\pi_B \leftarrow P^f(\mathcal{C}, \phi_B, (\phi_A, \pi_A))$$

Why study relativized arguments? [2/2] **Motivation 2: Efficiency**

Recurring cryptographic computations show up a lot: - Correctness proof of encryption/decryption, signature verification, hash function, etc.

e.g.
$$L_s := \{(n, y) \in \mathbb{N} \times \{0, 1\}^{|s|} : \exists x \in \{0, 1\}^s, H_s^{(n)}(n) \in \mathbb{N} \times \{0, 1\}^{|s|} : \exists x \in \{0, 1\}^s, H_s^{(n)}(n) \in \mathbb{N} \times \{0, 1\}^s$$

SNARGs for L_s are expensive (circuit that iteratively applies H_s for *n* times = $\Omega(n | H_s |)$).

Potential alternative route:

- Treat the hash function as an oracle.
- Relativized arguments do not depend on complexity of the hash functions. 😔

More generally, relativization removes the need for optimizing the recurring sub-computation. Do relativized SNARGs exist in oracle models? Yes!

If $NP^{H_s} \subseteq ARG^{H_s}$, SNARGs for L_s do not depend on $|H_s|$

Existing relativized SNARGs

Relativized SNARGs exist in some oracle models:

- Signed random oracle model (SROM) [CT10]
- Low-degree random oracle (LDROM) [CCS22]
- Arithmetized random oracle model (AROM) [CCGOS23]

How about the random oracle model?

Popular belief: No.

Popular intuition: Relativized PCPs/IOPs do not exist in the ROM [CL20]. Counterexample to popular belief:

- Relativized PCPs/IOPs do not exist in the LDROM [CL20].
- Relativized SNARGs exist in the LDROM [CCS22].

Hard to instantiate!

Our results Trivial Baseline 1. DTIME⁰[t] \subseteq ARG⁰[vq = t]. Verifier computes everything itself.

Theorem 1. DTIME^O[t] $\not\subseteq$ ARG^O[vq = o(t)].

argument proof size

Trivial Baseline 2. NTIME⁰[t] \subseteq ARG⁰[as = t]. Prover sends the entire witness.

Theorem 2. NTIME^O[t] $\not\subseteq$ ARG^O[as = o(t)].

Corollary. Relativized IVC/PCD does not exist in the ROM! Note.

- The results hold for SNARGs secure against query-bounded and time-bounded adversaries.
- Similar results hold for interactive arguments.

Relativized arguments in the random oracle model do not exist.

verifier query complexity to the RO

Existence of IVC/PCD in the ROM still remains open.

Separation between NTIME and ARG

Hard language in NTIME⁰[t]

Lemma.

argument proof size There exists $L_{\mathcal{O}}$ such that $L_{\mathcal{O}} \in \mathsf{NTIME}^{\mathcal{O}}[t]$ and $L_{\mathcal{O}} \notin \mathsf{ARG}^{\mathcal{O}}[as = o(t)]$. $L_{\mathcal{O}} := \{L_f : f \in \mathcal{O}\}$

$$L_{f} := \left\{ x \in \{0,1\}^{n} : \frac{x = 0^{n}}{\wedge \exists w \in \{0,1\}^{t(n)}, \forall i \in [t(n)], f(w \| i)_{1} = 0} \right\}$$

	$w \ 1$	w 2	w 3	$w \ 4$	w 5	
f	1000	<mark>0</mark> 101	<mark>1</mark> 111	0000	<mark>0</mark> 010	$x \notin L_{f}$
f	<mark>0</mark> 001	<mark>0</mark> 111	<mark>0</mark> 110	<mark>0</mark> 111	<mark>0</mark> 110	$x \in L_{f}$

Why is L_f hard?

- Needs t(n) queries to be sure that $x \in L_f$ or not.
- Flipping even one bit of f could change the membership of x.

	$w \ 1$	w 2	w 3	w 4	w 5	
f	1000	0101	0100	0000	0010	x ∉
f'	0000	0101	0100	0000	0010	<i>x</i> ∈

Proof outline

- 1. Fix $x := 0^n$ for some n.
- 2. Consider $f^{\star} \in \mathcal{O}$ such that $x \notin L_{f^{\star}}$.
- 3. For every $w \in \{0,1\}^{t(n)}$, define f_w to be f^{\star} , except that $f_w(w \| i)_1 = 0$ for every $i \in [t(n)]$.
 - $f_w \in \mathcal{O}$.
 - $x \in L_{f_w}$.

- 4. Claim*: For every $f \in \mathcal{O}$, there exists a large set $Q_f \subseteq \{0,1\}^{t(n)}$ such that $\forall w \in Q_f, \forall i \in [t(n)], \Pr[V(x) \text{ queries } f \text{ at } w || i] \text{ is small.}$
- 5. Soundness of ARG + $x \notin L_{f^{\star}} \Longrightarrow \Pr[V^{f^{\star}}(x, \pi_{f^{\star}}) = 1]$ is small for efficiently generated $\pi_{f^{\star}}$. 6. Point $4 \Longrightarrow \forall w \in Q_{f^{\star}}, \Pr[V^{f_w}(x, \pi_{f^{\star}}) = 1] \approx \Pr[V^{f^{\star}}(x, \pi_{f^{\star}}) = 1].$
- 7. Point 5 + 6 $\implies \forall w \in Q_{f^*}$, $\Pr[V^{f_w}(x, \pi_{f^*}) = 1]$ is small, contradicting completeness of ARG.

$$L_{f} := \left\{ x \in \{0,1\}^{n} : \begin{array}{l} x = 0^{n} \\ \wedge \exists w \in \{0,1\}^{t(n)}, \forall i \in [t(n)], f(w \| i)_{1} = 0 \end{array} \right\}$$

		$w \ 1$	w 2	w 3	w 4	w 5
	f^{\star}	1001	<mark>0</mark> 111	<mark>1</mark> 110	0000	1010
	f_w	<mark>0</mark> 001	<mark>0</mark> 111	<mark>0</mark> 110	0000	0010

Intuition: without a long argument string, argument verifier cannot make meaningful queries!

Discussion and open problems

Low-degree random oracle model

Low-degree random oracle (LDROM) $\mathscr{P} := \{\mathscr{P}_{\ell}\}_{\ell \in \mathbb{N}}$ \mathscr{P}_{ℓ} is the uniform distribution over all polynomials $f: \mathbb{F}_{q(\ell)}^{n(\ell)} \to \mathbb{F}_{q(\ell)}$ of individual degree at most $d(\ell)$. **Open problem 1.** Rule out relativized SNARGs in the LDROM, secure against query-bounded adversaries.

[CCS22] construction:

Relativized SNARGs in the LDROM secure against query-bounded and time-bounded adversaries

Our proof:

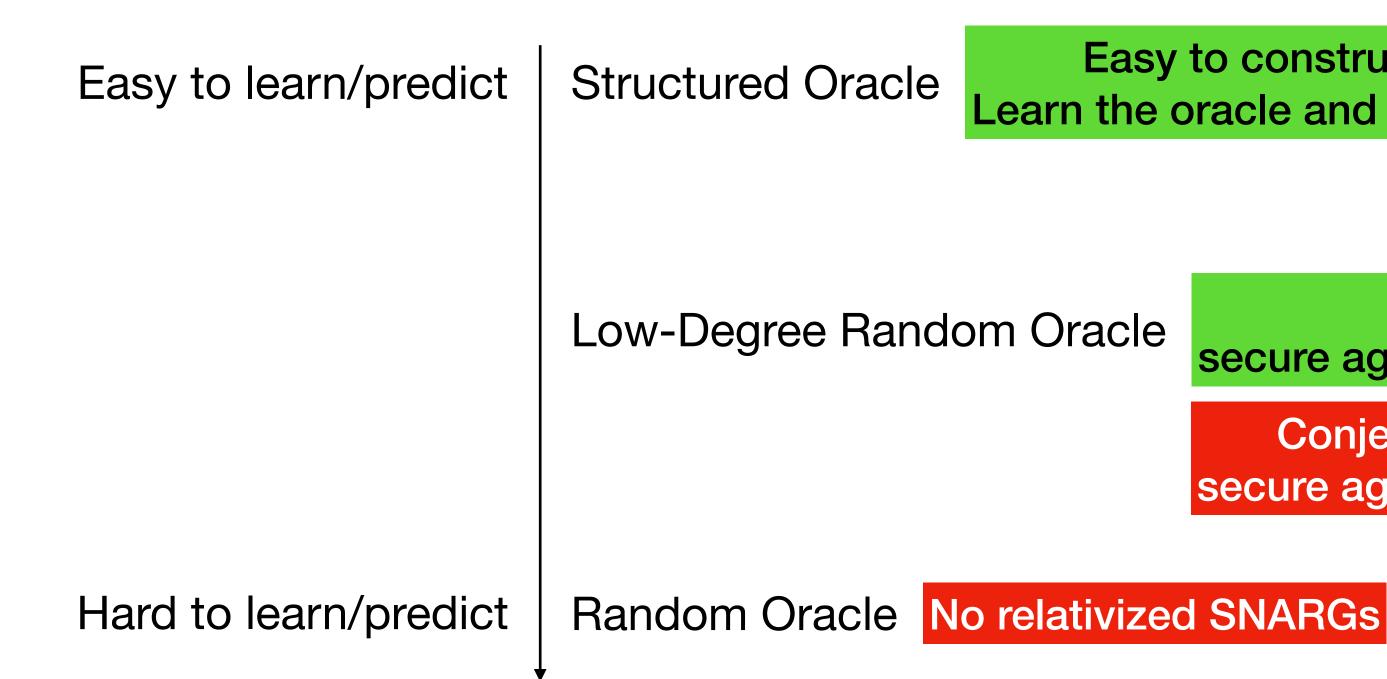
Can't generalize, no guarantee that $f_w \in \mathscr{P}[q, d]$.

		$w \ 1$	w 2	w 3	$w \ 4$	w 5
	f^{\star}	1001	<mark>0</mark> 111	<mark>1</mark> 110	0000	1010
	f_w	0001	<mark>0</mark> 111	<mark>0</mark> 110	0000	<mark>0</mark> 010

Do they exist or not??

[CL20] impossibility: No relativized PCPs in the LDROM (PCPs are common subroutines in SNARGs constructions) Caveat: only proved it for specific $f \in \mathscr{P}[q, d]$, instead of a uniformly sampled $f \leftarrow \mathscr{P}[q, d]$

Characterization



Open problem 2.

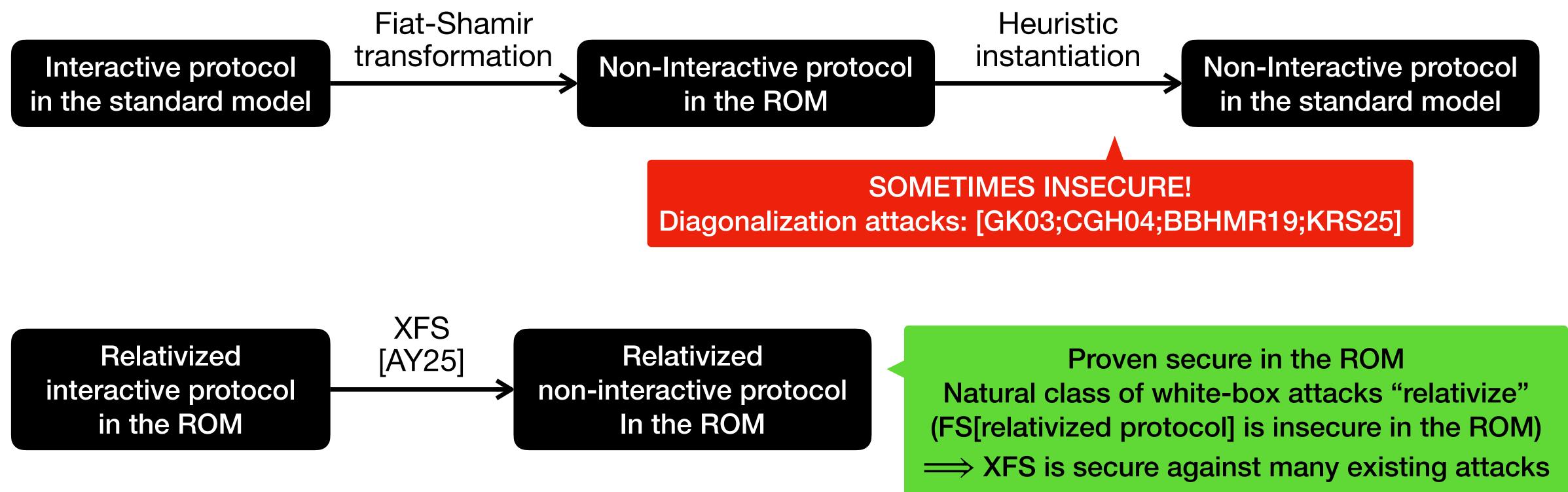
Give a sufficient and necessary condition for an oracle that separates DTIME/NTIME and relativized arguments.

Easy to construct relativized SNARGs: Learn the oracle and use non-relativized SNARGs

> Possible to construct relativized SNARGs secure against query-bounded and time-bounded adversaries

Conjecture: no relativized SNARGs secure against query-bounded adversaries

Insights into Fiat-Shamir



Is Fiat-Shamir transformation secure in other oracle models? LDROM? AROM?

Thank you!

https://eprint.iacr.org/2024/728

