On Parallel Repetition of PCPs Alessandro Chiesa, Ziyi Guan, Burcu Yıldız

Sample Ste all all a should go a bar a far a sug

What is parallel repetition?

Probabilistic proof systems

Fundamental question: How to reduce soundness error for probabilistic proofs?

- Rerun the proof system for t times: soundness error $\beta \mapsto \beta^t$, but other efficiency measures increase as t increases.
 - Sometimes we call this rerunning strategy the sequential repetition.
- Parallel repetition: reduce soundness error while preserve key efficiency measures.
 - Defined differently for different probabilistic proofs.

Parallel repetition for IPs (interactive proofs)

Sequential repetition: Round complexity $\mathbf{k} \mapsto t \cdot \mathbf{k}$

Round complexity $k \mapsto k \nabla$ Prover communication complexity $pc \mapsto t \cdot pc$ Verifier communication complexity vc \mapsto *t* · vc Verifier randomness complexity $\mathbf{r} \mapsto t \cdot \mathbf{r}$ How about the soundness error?

- Soundness error $\beta \mapsto \beta^t \nabla$

Parallel repetition for MIPs (multi-prover interactive proofs)

Number of provers $k \mapsto k \checkmark$ Round complexity preserved \checkmark

Prover communication complexity $pc \mapsto t \cdot pc$ Verifier communication complexity $vc \mapsto t \cdot vc$ Verifier randomness complexity $\mathbf{r} \mapsto t \cdot \mathbf{r}$

How about the soundness error?

- $\beta^t \leq \beta_t \leq \beta$

Soundness error $\beta < 1 \implies \lim \beta_t = 0$

 $t \rightarrow \infty$

- [Verbitsky96]
- 2-prover MIP: $\beta_t \leq \beta^{c_V \cdot t}$ [Raz98]
- k-prover MIP: open
- Not as good as parallel repetition for IP

t-wise parallel repetition

Probabilistically checkable proof (PCP)

Perfect completeness: for every $x \in L$, let $\pi := \mathbf{P}(x)$, $\Pr_{\rho \leftarrow \{0,1\}^r} \left[\mathbf{V}^{\pi}(x;\rho) = 1 \right] = 1$. Soundness: for every $x \notin L$ and $\tilde{\pi} \in \Sigma^l$, $\Pr_{\rho \leftarrow \{0,1\}^r} \left[\mathbf{V}^{\tilde{\pi}}(x;\rho) = 1 \right] \leq \beta$.

How to reduce soundness error for PCPs?

r bits randomness

Sequential repetition for PCPs

Soundness error $\beta \mapsto \beta^t \checkmark$ Query complexity $q \mapsto t \cdot q$

Natural definition of parallel repetition: e.g. [DM11]

1. Sample t randomness for V: $(\rho_i)_{i \in [t]} \leftarrow (\{0,1\}^r)^t$. 2. Compute query lists of V: $Q_i := V_q(x; \rho_i)$. 3. Compute queries of \mathbf{V}_t : $\mathbf{Q}_i := \left(Q_j[i]\right)_{\substack{j \in [t] \\ i \in I}}$. 4. Query the PCP string Π : $\mathbf{ans}_i := \Pi[\mathbf{Q}_i]^{j \in [t]}$.

5. Check that for every repetition $i \in [t]$: $\mathbf{V}_d\left(x, \rho_i, \left(\mathbf{ans}_j[i]\right)_{j \in [q]}\right)$.

Parallel repetition for PCPs [2/3]

E.g.: 2-wise parallel repetition of a 3-query PCP

- Verifier \mathbf{V}_2 samples ρ_1 and ρ_2 for the two repetitions.
- Assume $Q_1 = (q_{1,1}, q_{1,2}, q_{1,3})$ and $Q_2 = (q_{2,1}, q_{2,2}, q_{2,3})$.
- $\mathbf{Q}_1 := (q_{1,1}, q_{2,1}), \mathbf{Q}_2 := (q_{1,2}, q_{2,2}) \text{ and } \mathbf{Q}_3 := (q_{1,3}, q_{2,3}).$

Second position in \mathbf{V}_2 's query

$$\pi = (a, b, c, d, e)$$

First position in \mathbf{V}_2 's query

П	1	2	3	4	
1	(a,a)	(<i>a</i> , <i>b</i>)	(a,c)	(a,d)	(a
2	(b,a)	(b,b)	(<i>b</i> , <i>c</i>)	(b,d)	(b
3	(c,a)	(c,b)	(c,c)	(c,d)	(0
4	(d,a)	(d,b)	(d,c)	(d,d)	(d
5	(e,a)	(e,b)	(e,c)	(<i>e</i> , <i>d</i>)	(<i>e</i>

- Query complexity $q \mapsto q \checkmark$
- Alphabet size $\Sigma \mapsto \Sigma^t$
- Proof length $l \mapsto l^t$

Verifier randomness complexity $\mathbf{r} \mapsto t \cdot \mathbf{r}$

What is the soundness error?

Our results

Result 1. Parallel repetition for PCP doesn't work: For a wide range of NP-complete languages, parallel repetition brings the limit of soundness error to 1.

Result 2. Parallel repetition for a PCP works if and only if the **MIP projection of the PCP** has non-trivial soundness.

Result 3. Rate of decay of parallel repetition for some PCPs cannot be better than that for MIPs.

Result 4. Consistent parallel repetition (a variant of parallel repetition that we defined) for PCPs work as expected with exponential rate of decay.

Isn't parallel repetition for PCP used previously?

e.g. Hardness of approximation

Step 1. Transform a PCP to a 2-prover MIP.

NP-complete PCP theorem Transformation PCP language

Step 2. Parallel repeat the 2-prover MIP to reduce soundness error.

Step 3. Convert the repeated MIP back to a PCP.

Parallel repetition for PCPs fails

Parallel repetition for PCPs fails

Theorem 1.

2-query PCP

for NP-complete language L

soundness error $\beta < 1$

t-wise parallel repetition

2-query PCP for *L* soundness error β_t

for every $x \notin L$, $\lim \beta_t = 1$ $t \rightarrow \infty$

In particular, $\beta(x)^t \leq \beta_t(x) \leq \beta(x)$ does not hold.

PCP for 3COL

- $3COL := \{G : G \text{ has a 3-coloring}\}$
- $PCP = (\mathbf{P}, \mathbf{V})$ for 3COL

Perfect completeness: V always accepts for every $G \in 3COL$. • Soundness: $\beta(G) \leq \frac{|E| - 1}{|E|}$ for every $G \notin 3$ COL.

1. Sample $\{u, v\} \leftarrow E$. (Assume u < v.) 2. Query π at u and v, and check that $\pi[u] \neq \pi[v]$.

Parallel repetition for PCP for 3COL fails [1/2]

			S
		Π	<i>v</i> ₁
	First position in \mathbf{V}_2 's query	v_1	(0,0)
		<i>v</i> ₂	(0,0)
v_3		v ₃	(0,0)
		$\mathcal{V}_{\mathcal{A}}$	(0,0)

- V_2 rejects if and only if answers to both queries are (1,1):
 - Why can't it happen when both answers are (0,0)?
 - Both answers are (1,1) if and only if v_1 is not queried.

• Soundness error: $\beta_2(K_4) \ge 1 - \left(\frac{3}{6}\right)^2 = \frac{3}{4}$.

Second position

- V's query lists: $Q_1 = (u_1, w_1), Q_2 = (u_2, w_2).$
- V_2 's queries: $Q_1 = (u_1, u_2), Q_2 = (w_1, w_2).$

-
$$u_1 < w_1$$
 and $u_2 < w_2$.

- Answer to \mathbf{Q}_2 cannot be (0,0).

Parallel repetition for PCP for 3COL fails [2/2]

Malicious prover strategy

For every possible query (q_1, q_2) of \mathbf{V}_2 :

- Otherwise, Set $\tilde{\Pi}[(q_1, q_2)] = (1, 1)$.

$$\implies \beta_2(G) \ge 1 - \left(\frac{|E| - 1}{|E|}\right)^2.$$

t-wise parallel repetition: $\beta_t(G) \ge 1 - \left(\frac{|E| - 1}{|E|}\right)^t$

$$\implies \lim_{t \to \infty} \beta_t(G) = 1.$$

• If at least one of (q_1, q_2) is the smallest non-isolated vertex in G: Set $\Pi[(q_1, q_2)] = (0, 0)$.

Parallel repetition for PCP increases soundness error

In general, we can show that there are infinitely many instances $G \notin 3COL$ such that $\beta_t(G) > \beta_{t-1}(G)$.

Generalization to symmetric CSPs [1/2]

Constraint satisfaction problem (CSP):

- A list ϕ of constraints over variables in X. ullet
- Each constraint checks a predicate f over some variables. lacksquare
- ϕ is satisfiable if and only if there is an assignment to the variables that satisfies all constraints. lacksquare
- \implies 3COL is a CSP: each constraint is over an edge and checking the vertex colors.

3COL is a symmetric CSP: the predicate for each constraint is the same.

Generalization to symmetric CSPs [2/2]

CSP, we show that for some instances for 3SAT, $\beta > 0$ and $\lim \beta_t = 0$.

Note: Lemma 1 does not extend to non-symmetric CSPs. e.g. 3SAT is a non-symmetric $t \rightarrow \infty$

A characterization result

The characterization result

 PCP_t soundness error β_t

MIP soundness error β_{MIP}

for every $x \notin L$, $\lim \beta_t = 0 \iff \beta_{\text{MIP}} < 1$ $t \rightarrow \infty$

MIP projection

- Completeness of the MIP is the same as that of PCP.
- Soundness: for every $x \notin L$, $\beta_{MTP}(x) \ge \beta_{PCP}(x)$.
 - No consistency check \implies MIP might not be secure.

- 1. Sample a randomness for $V: \rho \leftarrow \{0,1\}^r$.
- 2. Compute query lists of V: $Q := V_q(x; \rho)$.
- 3. Send the *i*-th query to the *i*-th prover P_i and get their replies.
- 4. Check that **V** accept: $\mathbf{V}_d \left(x, \rho, \left(b_i \right)_{i \in [q]} \right)$.

Revisit: parallel repetition for PCP for 3COL

Theorem 2.
$$\lim_{t \to \infty} \beta_t = 0 \iff \beta_{\text{MIP}} < 1$$

$$\implies \beta_{\text{MIP}} = 1$$
 for 3COL.

- First malicious MIP prover always send 0.
- Second malicious MIP prover always send 1.

Proof of Theorem 2 [1/2]

 $\beta_{\text{MIP}} = 1 \implies \lim_{t \to \infty} \beta_t \ge \frac{1}{2^r} > 0$ • The optimal MIP provers can always convince the MIP verifier. - Moreover, we can find $(2^r)^{t-1}$ different randomness ρ such that $\mathbf{V}_t(\rho)$ can be convinced. • $\beta_t(x) \ge \frac{|W_{t,\rho^*}|}{|(\{0,1\}^r)^t|} = \frac{(2^r)^{t-1}}{(2^r)^t} = \frac{1}{2^r} \Longrightarrow \lim_{t \to \infty} \frac{1}{t \to \infty}$

$$\sum_{o}^{n} \beta_t(x) = \frac{1}{2^{\mathsf{r}}}.$$

Note: We show the above analysis is tight by giving examples of PCPs whose limits attain $\frac{c}{2r}$ for every $c \in [1,2^r]$.

Proof of Theorem 2 [2/2]

- $\beta_{\text{MIP}} < 1 \implies \lim_{t \to \infty} \beta_t = 0$
 - Key observation: MIP projection and parallel repetition commutes.
 - i.e. The <u>MIP projection of the parallel repetition for PCP</u> is equivalent to the <u>parallel repetition of the</u> <u>MIP projection of the PCP</u>.

Rate of decay of parallel repetition

Rate of decay of parallel repetition

Completeness and soundness of the PCP are the same as that of the MIP.

Theorem 2 (characterization) tells us: if $\beta_{MIP} < 1$, parallel repetition works for its PCP evaluation!

The set of all MIPs with nontrivial soundness

 $\implies \beta_{\mathsf{PCP}_t} = \beta_{\mathsf{MIP}_t} < 1$

Consistent parallel repetition works

S

Solution: consistent parallel repetition [1/3]

No additional queries or randomness compare to parallel repetition!

Verifier $\hat{\mathbf{V}}_{t}$ 1. Sample t randomness for V: $(\rho_i)_{i \in [t]} \leftarrow (\{0,1\}^r)^t$. 2. Compute query lists of V: $Q_i := V_q(x; \rho_i)$. 3. Compute query lists of $\hat{\mathbf{V}}_t$: $\mathbf{Q}_i := \left(Q_j[i] \right)_{j \in [t]}$. 4. Query the PCP string Π : **ans**_{*i*} := Π [**Q**_{*i*}]. 5. Check that for every repetition $i \in [t]$: $\mathbf{V}_d \left(x, \rho_i, \left(ans_j[i] \right)_{j \in [q]}^{\mathsf{C}} \right)$ 6. For every query $q \in [l]$ made by $\hat{\mathbf{V}}_t$, if it is queried more than once, check that all answers to q are the same.

Solution: consistent parallel repetition [2/3]

Solution: consistent parallel repetition [3/3]

- $O_{x}(1)$ is a large constant that doesn't depend on *t*.
- Derived from a counting problem:

• Open problem: can $O_x(1)$ be improved?

$s_n \in \Sigma^n : |\{s_1, ..., s_n\}| \le m\}$.

Future directions

Question 1. Can we replace the dichotomy in the characterization result by a trichotomy?

increases after each repetition.

Question 2. More precise rate of decay of parallel repetition?

Direct analysis without mentioning MIPs?

Question 3. Is there more to say about rate of decay of consistent parallel repetition?

- Better constant?
- Another curve?

• Three behaviors of parallel repetition: Limit doesn't go to 0, limit goes to 0, and soundness error strictly

Thank you!

https://eprint.iacr.org/2023/1714