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Probabilistic proof systems
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What is parallel repetition?

𝖭𝖯

Fundamental question: How to reduce soundness error for probabilistic proofs? 


• Rerun the proof system for  times: soundness error , but other efficiency measures increase as 
 increases. 

- Sometimes we call this rerunning strategy the sequential repetition.


• Parallel repetition: reduce soundness error while preserve key efficiency measures. 

- Defined differently for different probabilistic proofs.

t β ↦ βt

t

𝖬𝖨𝖯

Multi-prover 
Interactive Proof

𝖨𝖯

Interactive Proof

𝖯𝖢𝖯

Probabilistically 
Checkable Proof

𝖨𝖮𝖯

Interactive Oracle Proof
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Parallel repetition for IPs (interactive proofs)

Prover P Verifier V

⋮

a1
b1
a2

b2

Prover Pt Verifier Vt

⋮

a1,1, …, at,1

b1,1, …, bt,1
a1,2, …, at,2
b1,2, …, bt,2

Round complexity  ✅

Prover communication complexity 

Verifier communication complexity 

Verifier randomness complexity 

How about the soundness error?


- Soundness error  ✅

𝗄 ↦ 𝗄
pc ↦ t ⋅ pc
vc ↦ t ⋅ vc

𝗋 ↦ t ⋅ 𝗋

β ↦ βt

Sequential repetition: 

Round complexity 𝗄 ↦ t ⋅ 𝗄

-wise 
parallel 

repetition

t



Parallel repetition for MIPs (multi-prover interactive proofs)

How about the soundness error?

- 


- Soundness error  
[Verbitsky96]


- 2-prover MIP:  [Raz98]

- k-prover MIP: open

- Not as good as parallel repetition for IP

βt ≤ βt ≤ β
β < 1 ⟹ lim

t→∞
βt = 0

βt ≤ βcV⋅t
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Prover P1

Verifier V
⋮

a1

a𝗄

b1

b𝗄

Prover P𝗄

Prover Pt,1

Verifier Vt

⋮

a1,1, …, at,1

a1,𝗄, …, at,𝗄

b1,1, …, bt,1

b1,𝗄, …, bt,𝗄

Prover Pt,𝗄

-wise 
parallel 

repetition

t

Number of provers  ✅

Round complexity preserved ✅

Prover communication complexity 

Verifier communication complexity 

Verifier randomness complexity 

𝗄 ↦ 𝗄

pc ↦ t ⋅ pc
vc ↦ t ⋅ vc

𝗋 ↦ t ⋅ 𝗋

For all possible verifier’s messages, 
answer with ’s strategies.P1



Probabilistically checkable proof (PCP)
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π ∈ Σl

Perfect completeness: for every , let , . x ∈ L π := P(x) Prρ←{0,1}𝗋 [Vπ(x; ρ) = 1] = 1

Prover P Verifier V

Soundness: for every  and , .x ∉ L π̃ ∈ Σl Prρ←{0,1}𝗋 [Vπ̃(x; ρ) = 1] ≤ β

 queries𝗊

 bits randomness𝗋

How to reduce soundness error for PCPs? 

π



Sequential repetition for PCPs
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Verifier Vt

⋮

 queries𝗊

 queries𝗊

 bits randomness𝗋

 bits randomness𝗋

Soundness error  ✅

Query complexity 

β ↦ βt

𝗊 ↦ t ⋅ 𝗊

π ∈ Σl
Prover P

π



Parallel repetition for PCPs [1/3]

Π := ((π[q1], …, π[qt]))(q1,…,qt)∈[l]t ∈ (Σt)lt

1. Sample t randomness for : .


2. Compute query lists of : .


3. Compute queries of : .


4. Query the PCP string : .


5. Check that for every repetition : .

V (ρi)i∈[t] ← ({0,1}𝗋)t

V Qi := Vq(x; ρi)

Vt Qi := (Qj[i])j∈[t]Π ansi := Π[Qi]

i ∈ [t] Vd (x, ρi, (ansj[i])j∈[𝗊])

Verifier VtProver Pt
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 queries𝗊

 bits randomnesst ⋅ 𝗋

Natural definition of parallel repetition: e.g. [DM11]

Q1[2] Qt[2]

ρt

Q2[𝗊]

ρ2

Q2[2]
Q1[1] Qt[1]

Q1[𝗊]

Q2[1]

…
⋮

Qt[𝗊]

…
…
…ρ1

Q2 …Q1[2]

Q𝗊

Qt[1]

⋮⋮
Q2[2]

Qt[𝗊]

Q2[1]

Q1[𝗊]

Q1

ρtρ2

…

Q2[𝗊]

Qt[2]
Q1[1]

ρ1

…

…

For all possible verifier’s queries, 
answer with ’s strategies.π

Π



Parallel repetition for PCPs [2/3]

Verifier V2
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 queries3
 bits randomness2 ⋅ 𝗋

E.g.: 2-wise parallel repetition of a 3-query PCP


• Verifier  samples  and  for the two repetitions. 


• Assume  and .


• ,  and .

V2 ρ1 ρ2

Q1 = (q1,1, q1,2, q1,3) Q2 = (q2,1, q2,2, q2,3)

Q1 := (q1,1, q2,1) Q2 := (q1,2, q2,2) Q3 := (q1,3, q2,3)

First position 
in ’s queryV2

Second position 
in ’s queryV2

π = (a, b, c, d, e)
(a , c)

(b, a)

(d , e)(d , c)

2

(c, a) (c, e)

3

2

(d , a)

(e, c) (e, d )

(b, d )(b, c)

5

(e, a)

(d , d )

1

5 (e, b)

(a , e)

4

(a , a)

(c, d )(c, c)

4

(a , d )

(b, b)

(c, b)3

(d , b)

(a , b)1

(e, e)

(b, e)

Π



Parallel repetition for PCPs [3/3]
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What is the soundness error? 

Query complexity  ✅

Alphabet size 

Proof length 

Verifier randomness complexity 

𝗊 ↦ 𝗊
Σ ↦ Σt

l ↦ lt

𝗋 ↦ t ⋅ 𝗋

Π := ((π[q1], …, π[qt]))(q1,…,qt)∈[l]t ∈ (Σt)lt
Verifier VtProver Pt

 queries𝗊

 bits randomnesst ⋅ 𝗋

Π
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Our results

Result 1. Parallel repetition for PCP doesn’t work: For a wide range of NP-complete languages, parallel 
repetition brings the limit of soundness error to 1.

Result 2. Parallel repetition for a PCP works if and only if the MIP projection of the PCP has non-trivial 
soundness. 

Result 3. Rate of decay of parallel repetition for some PCPs cannot be better than that for MIPs. 

Result 4. Consistent parallel repetition (a variant of parallel repetition that we defined) for PCPs work as 
expected with exponential rate of decay.



Isn’t parallel repetition for PCP used previously?
e.g. Hardness of approximation
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𝖯𝖢𝖯 2-prover 𝖬𝖨𝖯-complete 
language

𝖭𝖯 PCP theorem
PCP-MIP


Transformation

Too expensive! Soundness error β ↦ 1 −
1 − β

𝗊Step 1. Transform a PCP to a 2-prover MIP.
Prover P1

Verifier V
a1 := Q

b1 := π[Q]

a2 := Q[r]

b2 := π[Q[r]]

PCP-MIP

Transformation

Prover P2

Step 2. Parallel repeat the 2-prover MIP to reduce soundness error.

2-prover 𝖬𝖨𝖯
Low error  

2-prover 𝖬𝖨𝖯
Parallel repetition

Step 3. Convert the repeated MIP back to a PCP.

MIP-PCP

TransformationLow error  

2-prover 𝖬𝖨𝖯 𝖯𝖢𝖯′￼

Prover P (i, Pi(a))i∈{1,2},a∈ΣV

Verifier V

MIP-PCP

Transformation



Parallel repetition for PCPs fails
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Parallel repetition for PCPs fails
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In particular,  does not hold.β(x)t ≤ βt(x) ≤ β(x)

2-query PCP  
for NP-complete language  

soundness error 
L

β < 1

t-wise

parallel repetition 2-query PCP for  

soundness error 
L
βt

for every , x ∉ L lim
t→∞

βt = 1

Theorem 1.



PCP for 𝟥𝖢𝖮𝖫
• 𝟥𝖢𝖮𝖫 := {G : G has a 3-coloring}

•  for 𝖯𝖢𝖯 = (P, V) 𝟥𝖢𝖮𝖫

Verifier V (G = (V, E))

1. Sample . (Assume .)

2. Query  at  and , and check that . 

{u, v} ← E u < v
π u v π[u] ≠ π[v]

• Perfect completeness:  always accepts for every .


• Soundness:  for every .

V G ∈ 𝟥𝖢𝖮𝖫

β(G) ≤
|E | − 1

|E |
G ∉ 𝟥𝖢𝖮𝖫
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π : V → {0,1,2}



v2

v4v3

v1 Verifier V2
v4

(1,1)
v1 (0,0)

v3

(1,1)v2

(0,0)

(1,1)

(1,1)

(0,0)
(1,1)

Π̃

(1,1)(0,0)

(0,0)

v3

(0,0)

v4

(0,0)

(1,1)

(1,1)

v1 v2

(1,1)

•  rejects if and only if answers to both queries are :


- Why can’t it happen when both answers are ?


- Both answers are  if and only if  is not queried.


• Soundness error: .

V2 (1,1)

(0,0)

(1,1) v1

β2(K4) ≥ 1 − ( 3
6 )

2

=
3
4

Parallel repetition for PCP for  fails [1/2]𝟥𝖢𝖮𝖫

15

First position 
in ’s queryV2

Second position 
in ’s queryV2

• ’s query lists: , .


• ’s queries: , .


-  and .


- Answer to  cannot be .

V Q1 = (u1, w1) Q2 = (u2, w2)
V2 Q1 = (u1, u2) Q2 = (w1, w2)

u1 < w1 u2 < w2

Q2 (0,0)



For every possible query  of :


• If at least one of   is the smallest non-isolated vertex in : Set .


• Otherwise, Set .

(q1, q2) V2

(q1, q2) G Π̃[(q1, q2)] = (0,0)

Π̃[(q1, q2)] = (1,1)

.⟹ β2(G) ≥ 1 − ( |E | − 1
|E | )

2
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Malicious prover strategy

t-wise parallel repetition: 


.

βt(G) ≥ 1 − ( |E | − 1
|E | )

t

⟹ lim
t→∞

βt(G) = 1

Parallel repetition for PCP for  fails [2/2]𝟥𝖢𝖮𝖫



v2

v4v3

v1 • 


• 


•

β(K4) ≤
5
6

β2(K4) ≥
3
4

β2(K4) > β(K4)
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In general, we can show that there are infinitely many instances  such that .G ∉ 𝟥𝖢𝖮𝖫 βt(G) > βt−1(G)

Parallel repetition for PCP increases soundness error



Generalization to symmetric CSPs [1/2]

Constraint satisfaction problem (CSP):


• A list  of constraints over variables in .


• Each constraint checks a predicate  over some variables. 


•  is satisfiable if and only if there is an assignment to the variables that satisfies all constraints. 

ϕ X
f

ϕ

 is a CSP: each constraint is over an edge and checking the vertex colors.  ⟹ 𝟥𝖢𝖮𝖫

 is a symmetric CSP: the predicate for each constraint is the same.𝟥𝖢𝖮𝖫
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x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8



Note: Lemma 1 does not extend to non-symmetric CSPs. e.g.  is a non-symmetric 
CSP, we show that for some instances for ,  and . 

𝟥𝖲𝖠𝖳
𝟥𝖲𝖠𝖳 β > 0 lim

t→∞
βt = 0
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Generalization to symmetric CSPs [2/2]

PCP  
for symmetric CSP 
soundness error β

t-wise

parallel repetition  

soundness error 
𝖯𝖢𝖯t

βt

for every ,  and t ∈ ℕ βt+1 ≥ βt β > 0 ⟹ lim
t→∞

βt > 0

randomly selects a constraint and check its satisfiability

Lemma 1.



A characterization result
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The characterization result
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PCP

  
soundness error 

𝖯𝖢𝖯t
βt

Theorem 2.

MIP  
soundness error β𝖬𝖨𝖯

t-wise

parallel repetition

MIP projection

for every , x ∉ L lim
t→∞

βt = 0 ⟺ β𝖬𝖨𝖯 < 1



MIP projection
Prover P1

Prover P2

⋮

Prover P𝗊

Verifier V

1. Sample a randomness for : .


2. Compute query lists of : .


3. Send the -th query to the -th prover  and get their 
replies. 


4. Check that  accept: .

V ρ ← {0,1}𝗋

V Q := Vq(x; ρ)
i i Pi

V Vd (x, ρ, (bi)i∈[𝗊])

a1 := Q[1]

b1 := π[Q[1]]

a2 := Q[2]

b2 := π[Q[2]]

a𝗊 := Q[𝗊]

b𝗊 := π[Q[𝗊]]
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• Completeness of the MIP is the same as that of PCP.

• Soundness: for every , . 


- No consistency check  MIP might not be secure.
x ∉ L β𝖬𝖨𝖯(x) ≥ β𝖯𝖢𝖯(x)

⟹



Revisit: parallel repetition for PCP for 𝟥𝖢𝖮𝖫
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  for .


- First malicious MIP prover always send .


- Second malicious MIP prover always send .

⟹ β𝖬𝖨𝖯 = 1 𝟥𝖢𝖮𝖫

0
1

Theorem 2.   lim
t→∞

βt = 0 ⟺ β𝖬𝖨𝖯 < 1Verifier V

a1 := Q[1]

b1 := 0

a2 := Q[2]

b2 := 1

Prover P̃1

Prover P̃2



Proof of Theorem 2 [1/2]




• The optimal MIP provers can always convince the MIP verifier. 


- Moreover, we can find  different randomness  such that  can be convinced. 


•  .

β𝖬𝖨𝖯 = 1 ⟹ lim
t→∞

βt ≥
1
2𝗋

> 0

(2r)t−1 ρ Vt(ρ)

βt(x) ≥
|Wt,ρ⋆ |

| ({0,1}𝗋)t |
=

(2𝗋)t−1

(2𝗋)t
=

1
2𝗋

⟹ lim
t→∞

βt(x) =
1
2𝗋

Note: We show the above analysis is tight by giving examples of PCPs whose limits attain  for every .
c
2𝗋

c ∈ [1,2𝗋]
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• Key observation: MIP projection and parallel repetition commutes. 

• i.e. The MIP projection of the parallel repetition for PCP is equivalent to the parallel repetition of the 

MIP projection of the PCP. 

β𝖬𝖨𝖯 < 1 ⟹ lim
t→∞

βt = 0

𝖯𝖢𝖯 𝖬𝖨𝖯

𝖯𝖢𝖯t

𝖬𝖨𝖯t,1 𝖬𝖨𝖯t,2

MIP projection

β𝖯𝖢𝖯 ≤ β𝖬𝖨𝖯 < 1

β𝖯𝖢𝖯t
≤ β𝖬𝖨𝖯t,1

MIP projection

t-wise parallel 
repetition

β𝖬𝖨𝖯t,1
= β𝖬𝖨𝖯t,2

=

t-wise parallel 
repetition

Verbitsky’s: lim
t→∞

β𝖬𝖨𝖯t,2
= 0

⟹ lim
t→∞

β𝖯𝖢𝖯t
= 0
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Proof of Theorem 2 [2/2]



Rate of decay of parallel repetition
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Rate of decay of parallel repetition
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MIP  
soundness error < 1

 
soundness error 

𝖬𝖨𝖯t
β𝖬𝖨𝖯t

t-wise

parallel repetition

PCP evaluation
PCP

 
soundness error 

𝖯𝖢𝖯t
β𝖯𝖢𝖯t

t-wise

parallel repetition

for every  and , x ∉ L t ∈ ℕ β𝖯𝖢𝖯t
(x) = β𝖬𝖨𝖯t

(x) < 1

Lemma 2.



PCP evaluation
Prover P1

Prover P2

⋮

Prover P𝗄

Verifier V

a1

a2

ak

b1

b2

bk

MIP

Prover P Verifier V
π := ((i, Pi(a)))i∈[k],a∈ΣV

∈ ([k] × ΣP)k⋅|ΣV|

Completeness and soundness of the PCP are the same as that of the MIP.
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Theorem 2 (characterization) tells us: if , parallel repetition works for its PCP evaluation! β𝖬𝖨𝖯 < 1

π ∈ Σl

π
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Idea behind Lemma 2
The set of all PCPs

Canonical PCP for 
symmetric CSPs

The set of all MIPs with nontrivial soundness

⟹ β𝖯𝖢𝖯t
≤ β𝖬𝖨𝖯t

< 1
𝖯𝖢𝖯
PCP evaluation

MIP projection

𝖬𝖨𝖯

𝖬𝖨𝖯′￼

≈

𝖬𝖨𝖯t

𝖬𝖨𝖯′￼t

≈⟹

parallel 
repetition

parallel 
repetition

PCP evaluations

 (proved by 
construct malicious PCP 
strategy from MIP strategy)

β𝖯𝖢𝖯t
≥ β𝖬𝖨𝖯t

⟹ β𝖯𝖢𝖯t
= β𝖬𝖨𝖯t

< 1



Consistent parallel repetition works
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Solution: consistent parallel repetition [1/3]
Π := ((π[q1], …, π[qt]))(q1,…,qt)∈[l]t ∈ (Σt)lt

1. Sample t randomness for : .


2. Compute query lists of : .


3. Compute query lists of : .


4. Query the PCP string : .


5. Check that for every repetition : .


6. For every query  made by , if it is queried more than once, 
check that all answers to  are the same. 

V (ρi)i∈[t] ← ({0,1}𝗋)t

V Qi := Vq(x; ρi)

V̂t Qi := (Qj[i])j∈[t]
Π ansi := Π[Qi]

i ∈ [t] Vd (x, ρi, (ansj[i])j∈[𝗊])
q ∈ [l] V̂t

q

Verifier V̂t

31

No additional queries or 
randomness compare to 

parallel repetition!

Prover Pt

Π



Solution: consistent parallel repetition [2/3]
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Ox(1) ≤ ( 2𝗋

β(x) ⋅ 2𝗋)

Theorem 3.

PCP  
soundness error β < 1

t-wise

consistent parallel repetition  

soundness error 
𝖯𝖢𝖯t

̂βt

for every  and , x ∉ L t ∈ ℕ ̂βt(x) ≤ Ox(1) ⋅ β(x)t



Solution: consistent parallel repetition [3/3]

 is a large constant that doesn’t depend on .


• Derived from a counting problem:


.


• Bounded from the above by .


• Open problem: can  be improved?

Ox(1) t

𝒦(Σ, n, m) := {s = (s1, …, sn) ∈ Σn : |{s1, …, sn} | ≤ m}

( |Σ |
m ) ⋅ mn

Ox(1)
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Future directions
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Question 1. Can we replace the dichotomy in the characterization result by a trichotomy? 


• Three behaviors of parallel repetition: Limit doesn’t go to , limit goes to , and soundness error strictly 
increases after each repetition. 

0 0

Question 3. Is there more to say about rate of decay of consistent parallel repetition? 


• Better constant?


• Another curve?

Question 2. More precise rate of decay of parallel repetition? 


• Direct analysis without mentioning MIPs?
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Thank you!


https://eprint.iacr.org/2023/1714

https://eprint.iacr.org/2023/1714

