

Quantum Rewinding for IOP-Based Succinct Arguments Ziyi Guan

Joint work with Alessandro Chiesa, Marcel Dall'Agnol, Zijing Di, and Nick Spooner

What are succinct arguments?

Interactive proofs

Prover

Completeness: $\forall x \in L$, $\Pr\left[\langle P(x, w), V(x) \rangle = 1\right] = 1$

Soundness: $\forall x \notin L$ and adversary \tilde{P} , $\Pr\left[\langle \tilde{P}, V(x) \rangle = 1\right] \leq \epsilon$

Target metric: COMMUNICATION COMPLEXITY

Limitation: NP-complete languages do not have IPs with $CC \ll |w|$ [GH97]: $IP[CC] \subseteq BPTIME[2^{CC}]$

Verifier

Interactive arguments

Interactive proofs with computational soundness

Computational soundness: $\forall x \notin L$ and t_{ARG} -time adversary \tilde{P} , $\Pr[\langle \tilde{P}, V(x) \rangle = 1] \leq \epsilon_{ARG}(t_{ARG})$

AMAZING: \exists interactive arguments for NP with $CC \ll |w|$ (given basic cryptography)

Today's protagonist: **Succinct Interactive Arguments**

$\mathbf{CC} \ll |w|$ Why study succinct interactive arguments? $time(V) \ll |w|$

They exist based on simple crypto assumptions... ... so they play a role in numerous cryptotheory results.

> zero-knowledge with non-black-box simulation

> > RISC

ZERO

SSuccinct

They are a stepping stone for SNARGs, which have numerous real-world applications.

malicious MPC

Warm-up: Kilian's protocol The first and simplest succinct argument

How to construct succinct arguments?

[Kilian92]

Kilian's protocol

Classical security analysis

Goal: relate the soundness error of Kilian[PCP, VC] to the soundness error of PCP and the position binding error of VC.

Approach: rewind the prover

Theorem [CDGSY24]. \forall PCP (ϵ_{PCP} , ℓ_{PCP}), VC (ϵ_{VC}), $\epsilon > 0$,

 $\epsilon_{\text{ARG}}(t_{\text{ARG}}) \leq \epsilon_{\text{PCP}} + \epsilon_{\text{VC}}(t_{\text{VC}}) + \epsilon$, where $t_{\text{VC}} = O\left(t_{\text{ARG}} \cdot \ell_{\text{PCP}} \cdot \frac{1}{\epsilon}\right)$.

Overhead from rewinding. Possibly inherent [CDGSY24]

How about post-quantum security?

Post-quantum soundness: same as classical soundness but adversary is quantum:

 $\forall t_{ARG}$ -time QUANTUM adversary \tilde{P}^{\star} , $\Pr\left[\langle \tilde{P}^{\star}, V \right]$

$$\langle \rangle = 1] \le \epsilon_{\mathsf{ARG}}^{\star}(t_{\mathsf{ARG}})$$

Ethereum Unlocks Millions To Prepare For The Postquantum Era

Is this sufficient? Not with current rewinding techniques...

Key property for rewinding: Collapsing

Quantum reductor

Malicious Prover \tilde{P}^{\star}

 $ilde{P}^{\star}$

Quantum algorithms, but output classical messages

$$\tilde{P}^{\star} = (U_{\rm cm}, U_{\rm open})$$

What does it mean to have black-box access to \tilde{P}^{\star} ?

Reductor $\mathscr{R}^{\tilde{P}^{\star}}(\mathrm{cm},\epsilon)$

Black-box simulation of $\langle \tilde{P}^{\star}, V \rangle$

Input register $|x\rangle$

Commitment register \mathscr{C}

Answer register \mathscr{A}

Opening register \mathcal{O}

Randomness register $|\rho\rangle$

Quantum rewinding with commitment schemes

How about vector commitments?

CMSZ collapsing

 $(\operatorname{cm}, Q), (\mathscr{A}, \mathscr{O}) \leftarrow \operatorname{Adv}$ Exp_{0} : does nothing Exp_{1} : measure $(\mathscr{A}, \mathscr{O})$ Why m

 $(\mathscr{A}, \mathscr{O}) \longrightarrow \mathrm{Adv}$

 $\Pr[Adv \text{ distinguishes } Exp_0 \text{ and } Exp_1] \le \epsilon_{CMSZCollapse}^{\star}$

Exp

 U_{Adv}

Commitment register \mathscr{C}

Query register Q

Answer register \mathscr{A}

Opening register \mathcal{O}

Why measure O? CM only measure M [CMSZ21] security analysis needs O

Issue: does not imply position binding
CMSZ collapsing - one single query set
Position binding - two query sets Q, Q'

Merkle tree from collapsing hash is CMSZ collapsing

Post-quantum security of Kilian's protocol

Queries only depend on randomness

Theorem [CMSZ21]. \forall non-adaptive PCP, VC (negligible ϵ_{POPB}^{\star} , negligible $\epsilon_{CMSZCollapse}^{\star}$), $\epsilon_{ARG}^{\star} \leq \epsilon_{PCP} + \text{negl}$

Can we get a more robust VC collapsing def? (VC collapsing that implies position binding)

PCP is not concretely efficient - Can we use IOPs?

Can we get concrete bound as classical case?

Can we handle adaptive PCPs?

A new collapsing definition for VC: Collapse position binding

Naive attempt: openings to different subsets

Commitment register \mathscr{C}

Query register Q

Answer register \mathscr{A}

Opening register ${\mathcal O}$

Recall:

- CMSZ collapsing one single query set
- Position binding two query sets Q, Q'

Assume cm has two valid openings (Q, ans, pf), (Q', ans', pf')Adv \rightarrow cm, $|Q, \text{ans}, \text{pf}\rangle + |Q', \text{ans}', \text{pf}'\rangle$ Measuring $(Q, \mathcal{A}, \mathcal{O}) \Longrightarrow (Q, \text{ans}, \text{pf})$ or (Q', ans', pf') \implies Easily distinguishable from uniform superposition

Collapse position binding Lifting from commitment schemes

Collapse position binding

 $(\mathsf{cm},\mathsf{idx}), (\mathscr{A},\mathscr{O}) \longleftarrow \mathrm{Adv}$

Exp₀: does nothing

 Exp_1 : measure \mathscr{A} at location idx

 $(\mathscr{A}, \mathscr{O}) \longrightarrow \mathrm{Adv}$

 $\Pr[Adv \text{ distinguishes } Exp_0 \text{ and } Exp_1] \leq \epsilon_{VCCollapsePB}^{\star}$

Commitment register \mathscr{C}

Index register \mathcal{I}

Answer register \mathscr{A}

Opening register O

$\forall i \in [\ell]$, commitment scheme CM_i

Known:

- VC position binding $\iff \forall i, CM_i$ binding
- CM collapse binding \implies CM binding

Goal: VC collapse position binding $\iff \forall i, CM_i$ collapse binding

VC collapse position binding \implies VC position binding

Improved post-quantum security of Kilian's protocol

Can we get a more robust VC collapsing def? (VC collapsing that implies position binding)

PCP is not concretely efficient - Can we use IOPs?

Can we get concrete bound as classical case?

Can we handle adaptive PCPs?

IBCS protocol: Using IOPs instead of PCPs

IBCS protocol

Existing PCPs are not concretely efficient: prover time too big

People use IOPs

Public-coin interactive oracle proof (IOP)

[BCS16; CDGS23]

Our result

Queries depend on randomness and answers to queries to previous proofs

Theorem. \forall semi-adaptive IOP, VC, $\epsilon > 0$, $\epsilon_{ARG}^{\star}(t_{ARG}) \leq \epsilon_{IOP} + \mathbf{k} \cdot \ell_{max} \cdot \mathbf{q}_{max} \cdot \epsilon_{VCCollapsePB}^{\star}(t_{VC}) + \epsilon$, where $t_{VC} = \text{poly}(\ell/\epsilon) \cdot t_{ARG}$.

Extra $l_{max} \cdot q_{max}$ factor: cost of quantum rewinding

IBCS soundness [CDGS23,CGKY25]: $\epsilon_{ARG}(t_{ARG})$

Corollary: post-quantum secure succinct arguments in the standard model (no oracles), with the best asymptotic complexity known.

Corollary for Kilian's protocol. \forall adaptive PCP, VC, $\epsilon > 0$,

Quantum rewinding can fail $poly(\ell/\epsilon)$ attempts $\implies \ell/\epsilon$ valid rewindings

$$\leq \epsilon_{\text{IOP}} + \mathbf{k} \cdot \epsilon_{\text{VC}}(t_{\text{VC}}) + \epsilon$$
, where $t_{\text{VC}} = O(t_{\text{ARG}} \cdot \ell/\epsilon)$.

Starting point: [CMSZ21]

Post-quantum security for Kilian

[CMSZ21] reductor

[CMSZ21] security reduction

Goal: relate the soundness error of Kilian[PCP, VC] to the soundness error of PCP and the post-quantum security of VC.

Doesn't work for IOP!

How many possible IOP strings?

- Alphabet Σ
- Proof length ℓ
- Verifier randomness complexity r
- $\implies |\{f: \{0,1\}^{\mathsf{r}} \to \Sigma^{\mathscr{C}}\}| = |\Sigma|^{\mathscr{C} \cdot 2^{\mathsf{r}}}$

- \hat{P} is forced to open locations of the committed PCP string $ilde{\Pi}$ CMSZ collapsing
- **Rewind and Repair** \tilde{P}^{\star} a number of times to get a bunch of (ans, pf) \implies recover Π
- \implies success probability of Π is similar to success probability of $ilde{P}^{\star}$
- RepairState preserves SuccProb(\tilde{P}^{\star} Consider $\hat{\Pi}$ s.t. SuccProb $(\hat{\Pi}) < \text{SuccProb}(\tilde{P}^{\star})/20$ \implies (Chernoff) $\Pr[\tilde{\Pi} = \hat{\Pi}] \ll |\Sigma|^{-\ell}$
- $= \langle Union bound \rangle \Pr[SuccProb(\tilde{\Pi}) < SuccProb(\tilde{P}^{\star})/20]$ very small
- $\implies \epsilon_{ARG}^{\star} = \operatorname{SuccProb}(\tilde{P}^{\star}) \leq \epsilon_{PCP} + \operatorname{negl}$

Our security reduction

Our quantum reductor

Hybrid argument

Malicious Prover \tilde{P}^{\star}

Security reduction using $\mathscr{R}^{P^{\star}}$

Goal: SuccProb(\tilde{P}^{\star}) \approx SuccProb($\tilde{\mathbf{P}}^{\star}$)

Hybrid Prover $\tilde{\mathbb{P}}_{i}^{\star}$

- Rest of the rounds: same as \tilde{P}^{\star}

We show: $\forall i$, SuccProb $(\tilde{\mathbb{P}}_i^{\star}) \approx \text{SuccProb}(\tilde{\mathbb{P}}_{i+1}^{\star})$

Malicious IOP Prover $\tilde{\mathbf{P}}^{\star}$

- First i rounds: output IOP strings output by $\mathscr{R}^{ ilde{P}^{\star}}$

 \implies The (T + 1)-th rewind

Classical approach

- δ_q : prob $q \in [\ell_i]$ queried by V and correctly opened by \tilde{P}^{\star}
- $\Pr[\exists q, \tilde{\Pi}_{i+1}[q] \text{ unfilled}, q \text{ queried with valid opening}] \leq \ell_i \cdot \delta_q (1 \delta_q)^T \leq \ell_i / T$
- Setting T to get desired bound

 \implies does not preserve δ_a

Doesn't work for quantum!

RepairState only preserves $SuccProb(\tilde{P}^{\star})$

Random stopping time

Key: total number of locations $q \in [\ell_i]$ filled in by \mathscr{R} is ℓ_i

Why not adaptive IOP?

Queries to Π_1 depends on answers from Π_2

 $(Q_1, \mathcal{A}_1, \mathcal{O}_1)$ and $(Q_2, \mathcal{A}_2, \mathcal{O}_2)$ entangled \implies Measuring $(Q_1, \mathcal{A}_1, \mathcal{O}_1)$ collapses $(Q_2, \mathcal{A}_2, \mathcal{O}_2)$

Collapse position binding does not allow measurement of (Q_2, A_2, O_2)

Open problem: extend to adaptive IOP

[Kilian92]

Kilian's protocol: $PCP + VC \rightarrow ARG$

Prior work This work

[BCS16;CDGS23]

IBCS protocol: $IOP + VC \rightarrow ARG$

 \implies **Best** post-quantum secure succinct arguments in the standard model (no oracles)

https://eprint.iacr.org/2025/947

Thank you!

References

[BCS16]: Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. "Interactive Oracle Proofs". TCC '16-B.

[CDGS23]: Alessandro Chiesa, Marcel Dall'Agnol, Ziyi Guan, and Nicholas Spooner. On the Security of Succinct Interactive Arguments from Vector Commitments. ePrint Report 2023/1737.

[CDGSY24]: Alessandro Chiesa, Marcel Dall'Agnol, Ziyi Guan, Nicholas Spooner, and Eylon Yogev. "Untangling the Security of Kilian's Protocol: Upper and Lower Bounds". TCC '24.

[CDDGS24]: Alessandro Chiesa, Marcel Dall'Agnol, Zijing Di, Ziyi Guan, and Nicholas Spooner. "Quantum Rewinding for IOP-Based Succinct Arguments". ePrint Report 2025/947.

[CGKY25]: Alessandro Chiesa, Ziyi Guan, Christian Knabenhans, Zihan Yu. "On the Fiat–Shamir Security of Succinct Arguments from Functional Commitments". ePrint Report 2025/902.

[CMS19]: Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. "Succinct Arguments in the Quantum Random Oracle Model". In: TCC '19. [CMSZ21]: Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. "Post-Quantum Succinct Arguments: Breaking the Quantum

Rewinding Barrier". FOCS '21.

[GH97]: Oded Goldreich and Johan Håstad. On the Complexity of Interactive Proofs with Bounded Communication. 1998. Information Processing Letters.

[Kilian92]: Joe Kilian. "A note on efficient zero-knowledge proofs and arguments". STOC '92.

[Unr16]: Dominique Unruh. "Computationally binding quantum commitments". EUROCRYPT '16.

