
On the Security of Succinct Arguments
from Probabilistic Proofs

Ziyi Guan

What are succinct arguments?

2

Interactive proofs

3

⋮

Completeness: , ∀ x ∈ L Pr [⟨P(x, w), V(x)⟩ = 1] = 1

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L

Soundness: and adversary , ∀ x ∉ L P̃ Pr [⟨P̃, V(x)⟩ = 1] ≤ ϵ

Target metric: COMMUNICATION COMPLEXITY

Limitation: -complete languages do not have IPs with CC

[GH97]:

𝖭𝖯 ≪ |w |
𝖨𝖯[𝖢𝖢] ⊆ 𝖡𝖯𝖳𝖨𝖬𝖤[2𝖢𝖢]

Interactive arguments

4

Interactive proofs with computational soundness

Computational soundness: and -time adversary , ∀ x ∉ L t𝖠𝖱𝖦 P̃ Pr [⟨P̃, V(x)⟩ = 1] ≤ ϵ𝖠𝖱𝖦(t𝖠𝖱𝖦)

AMAZING: interactive arguments for NP with CC (given basic cryptography)∃ ≪ |w |

⋮

Prover

P(1λ, x, w)

Verifier

V(1λ, x)

Is ?x ∈ L

Today's protagonist:
Succinct Interactive Arguments

Why study succinct interactive arguments?

5

 CC ≪ |w |

𝗍𝗂𝗆𝖾(V) ≪ |w |

zero-knowledge with
non-black-box simulation malicious MPC

They are a stepping stone for SNARGs, which have numerous real-world applications.

...

They exist based on simple crypto assumptions...
... so they play a role in numerous cryptotheory results.

...

Kilian’s protocol:
The first and simplest succinct argument

6

How to construct succinct arguments?
[Kilian92]

Building block #2: vector commitment scheme (VC)

𝖼𝗆𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

𝗉𝖿
𝖵𝖢 . 𝖮𝗉𝖾𝗇 𝖵𝖢 . 𝖢𝗁𝖾𝖼𝗄 b𝖵𝖢

Π

𝖼𝗆

α ∈ [ℓ]
β = Π[α]

7

cm := 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π)

PCP randomness ρ

 from (Q, 𝖺𝗇𝗌, 𝗉𝖿) 𝖵𝖢 . 𝖮𝗉𝖾𝗇

Prover P

P𝖯𝖢𝖯

Verifier V

V𝖯𝖢𝖯

Kilian’s protocol

Building block #1: probabilistically checkable proof (PCP)

P𝖯𝖢𝖯(x, w)

𝖺𝗇𝗌 = Π[Q]
Q ⊆ [ℓ] b𝖯𝖢𝖯

V𝖯𝖢𝖯(x)
Π

Query
Answer

-step computation:

- Prover time:

- Verifier time:

(CC:)

T
𝗉𝗈𝗅𝗒(T)
𝗉𝗈𝗅𝗒𝗅𝗈𝗀(T)

𝗉𝗈𝗅𝗒𝗅𝗈𝗀(T)

Simple (and only known) security analysis

8

Goal: relate the soundness error of

to the soundness error of and the position binding error of .

𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
𝖯𝖢𝖯 𝖵𝖢

𝖵𝖢

P̃
𝖯𝖢𝖯

Malicious prover of 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]

(𝖼𝗆, Q, Q′￼, 𝖺𝗇𝗌, 𝖺𝗇𝗌′￼, 𝗉𝖿, 𝗉𝖿′￼) Adv

Position binding

Pr

𝖢𝗁𝖾𝖼𝗄(cm, Q′￼, 𝖺𝗇𝗌′￼, 𝗉𝖿′￼) = 1

≤ ϵ𝖵𝖢𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1

cm := 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π)

PCP randomness ρ

 from (Q, 𝖺𝗇𝗌, 𝗉𝖿) 𝖵𝖢 . 𝖮𝗉𝖾𝗇

Prover P

P𝖯𝖢𝖯

Verifier V

V𝖯𝖢𝖯

Kilian’s protocol

Rewind to get a malicious PCP string

 (PCP soundness) upper bound the success probability of

 (Position binding) cannot be too different from

P̃ Π̃
⟹ Π̃
⟹ Π̃ P̃

9

How to rewind?

Reductor ℛP̃(cm, ϵ)
cm
ρ1

(Q1, ans1, pf1)

ρ2

(Q2, ans2, pf2)

⋮
ρ𝖭

(Q𝖭, ans𝖭, pf𝖭)

Security from rewinding

Malicious Prover P̃

P Recover Π̃

Subtle design choices:

- Strict time vs. expected time

- Sample with/without replacement

- Stopping conditions

- …

What is the security of Kilian’s protocol?

10

Previously:

non-trivial restrictions• [Kilian92] gives an informal analysis

• [BG08] and assuming PCP is non-adaptive & reverse-samplable

• [CMSZ21] Kilian is secure when negligible (in a paper about post-quantum security)

ϵ𝖠𝖱𝖦 ≤ 8 ⋅ ϵ𝖯𝖢𝖯 + 3 ϵ𝖵𝖢

ϵ𝖯𝖢𝖯

cm := 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π)

PCP verifier randomness ρ

 from (Q, 𝖺𝗇𝗌, 𝗉𝖿) 𝖵𝖢 . 𝖮𝗉𝖾𝗇

Prover P

P𝖯𝖢𝖯

Verifier V

V𝖯𝖢𝖯

 We expect that ... right? ϵ𝖠𝖱𝖦 ≤ ϵ𝖯𝖢𝖯 + ϵ𝖵𝖢

Surprise! A limitation:

11

Prover P((G, p, g, h), w)

P

Verifier V(G, p, g)

V

: random α = gr r ∈ ℤp

: random challenge in β ℤp

γ = w ⋅ β + r mod p

Schnorr’s identification scheme

Lots of work on Schnorr security [Sho97,PS00,BP02,FPS20,BD20,RS21,SSY23] ...

... and yet there are still open questions on its optimal security!

Theorem. and s.t.

.

∃ 𝖯𝖢𝖯 𝖵𝖢
ϵ𝖲𝖼𝗁𝗇𝗈𝗋𝗋(t) ≤ ϵ𝖠𝖱𝖦(t)

Similar bound holds for
expected-time adversary

 breakthrough on Schnorr

ϵ𝖠𝖱𝖦 ≤ ϵ𝖯𝖢𝖯 + ϵ𝖵𝖢
⟹

More on this later…

Improved security for Kilian

12

𝖠𝖱𝖦 := 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
PCP for language with

- proof length

- query complexity

- soundness error

L
l

𝗊
ϵ𝖯𝖢𝖯

Vector commitment scheme with

position binding error ϵ𝖵𝖢

Theorem. ,

 , where .

∀ ϵ > 0
ϵ𝖠𝖱𝖦(t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯 + ϵ𝖵𝖢(t𝖵𝖢) + ϵ t𝖵𝖢 = O (t𝖠𝖱𝖦 ⋅ l ⋅ 1/ϵ)

This seems large…
Can we improve it?Why overhead?

- locations in

 Rewind at least times (e.g. maybe all PCP queries but are fixed)

- Some rewinds yield garbage:

‣ The locations were already found

‣ VC check fails

 Need times for each location as buffer

l ⋅ 1/ϵ
l Π

⟹ l 1

⟹ 1/ϵ

Folklore may remain legend for now...

13

Best analysis of Schnorr [PS00]: ϵ𝖲𝖼𝗁𝗇𝗈𝗋𝗋(t𝖲𝖼𝗁𝗇𝗈𝗋𝗋) ≤ ϵ𝖣𝖫𝖮𝖦(O(t𝖲𝖼𝗁𝗇𝗈𝗋𝗋))

That is, ϵ𝖠𝖱𝖦 ≤ ϵ𝖯𝖢𝖯 + 3 ϵ𝖵𝖢

: security parameterλSuppose (e.g. an ideal Merkle tree)ϵ𝖵𝖢(t) ≤ O(t2/2λ)

By Theorem: ϵ𝖠𝖱𝖦(t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯 + ϵ𝖵𝖢(t𝖠𝖱𝖦 ⋅ l/ϵ) + ϵ ≤ ϵ𝖯𝖢𝖯 + l2/3 ⋅ O (3 t2
𝖠𝖱𝖦/2λ)

... so the folklore is beyond current rewinding techniques.

Our lower bound
ϵ𝖲𝖼𝗁𝗇𝗈𝗋𝗋(t) ≤ ϵ𝖠𝖱𝖦(t)

Suppose
ϵ𝖠𝖱𝖦 ≤ ϵ𝖯𝖢𝖯 + ϵ𝖵𝖢

ϵ𝖲𝖼𝗁𝗇𝗈𝗋𝗋(t𝖲𝖼𝗁𝗇𝗈𝗋𝗋) ≤ ϵ𝖣𝖫𝖮𝖦(O(t𝖲𝖼𝗁𝗇𝗈𝗋𝗋))

+

⟹

 breakthrough on Schnorr!

ϵ𝖠𝖱𝖦 ≤ ϵ𝖯𝖢𝖯 + ϵ𝖵𝖢
⟹

Alternative route: expected-time regime

14

Theorem. ,

 , where .

∀ ϵ > 0
ϵ⋆

𝖠𝖱𝖦(t⋆
𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯 + ϵ⋆

𝖵𝖢(t⋆
𝖵𝖢) + ϵ t⋆

𝖵𝖢 = O (t⋆
𝖠𝖱𝖦 ⋅ log(𝗊/ϵ))

𝖠𝖱𝖦 := 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
PCP for language with

- proof length

- query complexity

- soundness error

L
l

𝗊
ϵ𝖯𝖢𝖯

Vector commitment scheme with

expected-time position binding error ϵ⋆

𝖵𝖢

Set (e.g. an ideal Merkle tree)

ϵ⋆
𝖵𝖢(t⋆) ≤ O ((t⋆)2/2λ)

⟹
ϵ⋆

𝖠𝖱𝖦(t⋆
𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯 + ϵ⋆

𝖵𝖢(t⋆
𝖠𝖱𝖦 ⋅ log(𝗊/ϵ)) + ϵ

≤ ϵ𝖯𝖢𝖯 + 𝗉𝗈𝗅𝗒𝗅𝗈𝗀 (𝗊 ⋅ (t⋆
𝖠𝖱𝖦)2/2λ) ⋅ O (2 (t⋆

𝖠𝖱𝖦)2/2λ)

: security parameterλ

We achieved !ϵ⋆
𝖠𝖱𝖦 ≤ ϵ𝖯𝖢𝖯 + ϵ⋆

𝖵𝖢
small factor

Theorem

Funky protocol

IBCS protocol
𝖥𝖨𝖮𝖯

𝖨𝖮𝖯

Roadmap

15

𝖯𝖢𝖯

𝖥𝖢
𝖵𝖢

Probabilistic proofs

Commitment schemes

Kilian’s protocol

Soundness

Fiat-Shamir soundness

Post-quantum soundness

Private-coin IOP?

Tight bounds?

Today: only in the standard model (no oracles)

i.e. interactive arguments in (Q)ROM out of scope

On security notions of arguments

16

Today: focus on soundness only
Soundness

Post-quantum soundnessFiat-Shamir soundness

Knowledge soundness Fiat-Shamir
knowledge soundness

Simulation
extractability Zero knowledge

Post-quantum
knowledge soundness

Actually: many properties/nuances to care about

Classical Post-quantum

e.g., [BL02] zero-knowledge
protocols do not have strict
poly-time (black-box) extractor

Strict-time adversary
vs.

Expected-time adversary

... ...

...

17

IBCS protocol:
Using IOPs instead of PCPs

Funky protocol

IBCS protocol
𝖥𝖨𝖮𝖯

𝖨𝖮𝖯
𝖯𝖢𝖯

𝖥𝖢
𝖵𝖢

Kilian’s protocol

IBCS protocol

Public-coin interactive oracle proof (IOP)

[BCS16; CDGS23]

18

P𝖨𝖮𝖯(x, w)

b𝖨𝖮𝖯

V𝖨𝖮𝖯(x)Π1

⋮
Π𝗄

ρ1

ρ𝗄

: Commitment to with VCcm1 Π1

: IOP randomness in round ρ1 1

⋮

: Commitment to with VCcm𝗄 Π𝗄

: IOP randomness in round ρ𝗄 𝗄

:

Query sets, answers, and their VC proofs
((Qi, 𝖺𝗇𝗌i, 𝗉𝖿i))i

Prover P

P𝖨𝖮𝖯

Verifier V

V𝖨𝖮𝖯

Existing PCPs are not concretely efficient: prover time too big

People use IOPs

Security of IBCS protocol

19

Theorem. ,

 , where .

∀ ϵ > 0
ϵ𝖠𝖱𝖦(t𝖠𝖱𝖦) ≤ ϵ𝖨𝖮𝖯 + 𝗄 ⋅ ϵ𝖵𝖢(t𝖵𝖢) + ϵ t𝖵𝖢 = O (t𝖠𝖱𝖦 ⋅ l/ϵ)

𝖠𝖱𝖦 := 𝖨𝖡𝖢𝖲[𝖨𝖮𝖯, 𝖵𝖢]

Public-coin IOP for language with

- proof length

- query complexity

- round complexity

- soundness error

L
l

𝗊
𝗄

ϵ𝖨𝖮𝖯

Vector commitment scheme with

position binding error ϵ𝖵𝖢

The ideal bound is not possible… What can we get? ϵ𝖠𝖱𝖦 ≤ ϵ𝖨𝖮𝖯 + ϵ𝖵𝖢

Recall, for Kilian’s protocol: ,

 , where .

∀ ϵ > 0
ϵ𝖠𝖱𝖦(t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯 + 1 ⋅ ϵ𝖵𝖢(t𝖵𝖢) + ϵ t𝖵𝖢 = O (t𝖠𝖱𝖦 ⋅ l/ϵ)

Why do we need public-coin IOPs?

20

Private-coin interactive oracle proof (IOP)

P𝖨𝖮𝖯(x, w)

b𝖨𝖮𝖯

V𝖨𝖮𝖯(x)Π1

⋮
Π𝗄

m1

m𝗄

: Commitment to with VCcm1 Π1

: IOP verifier query sets in round Q1 1

⋯

Prover P

P𝖨𝖮𝖯

Verifier V

V𝖨𝖮𝖯
: Answers and proofs for (ans1, pf1) Q1

: Commitment to with VCcm𝗄 Π𝗄

: IOP verifier query sets in round Q𝗄 𝗄

: Answers and proofs for (ans𝗄, pf𝗄) Q𝗄

 contains verifier’s queries to Qi Π1, …, Πi

Not secure!
e.g. IOP verifier accepts if IOP prover guesses all its queries

Clearly, the IBCS protocol is secure whenever
the underlying IOP is public-query... right?Queries can be learned by the prover (in "real-time")

Lemma: secure if IOP has an "efficient random continuation sampler"

How about public-query IOPs?

Open question: can we prove security for ALL public-query IOPs?

 (Or maybe there is a black-box barrier?)

Interlude: post-quantum security

21

Post-quantum soundness: same as classical soundness but adversary is quantum

 -time QUANTUM adversary , ∀ t𝖠𝖱𝖦 P̃ Pr [⟨P̃, V⟩ = 1] ≤ ϵ𝖠𝖱𝖦(t𝖠𝖱𝖦)

On quantum rewinding

22

cm
ρ1

(Q1, ans1, pf1)

ρ2

(Q2, ans2, pf2)

⋮
ρ𝖭

(Q𝖭, ans𝖭, pf𝖭)

Malicious Prover P̃

P

Prover state |ϕ⟩

Prover state |ϕ′￼⟩
Measure!

How to go back to ?|ϕ⟩

Reductor ℛP̃(cm, ϵ)Reductor ℛP̃(cm, ϵ)

Recent new tools for quantum rewinding [CMSZ21]:
“repair” the state instead of “rewind”

 post-quantum security of Kilian’s protocol⟹

No-cloning theorem!

For many years: can rewind O(1) times [Wat06,Unr12,Unr16b]

Problem: Kilian’s protocol needs many rewindings

Adapting for IBCS protocol runs into challenges

- Quantum rewinding toolset is cumbersome.

- Only other paper studying many-round interactive arguments [LMS22]

had to white-box adapt the tools in [CMSZ21]… (work for log rounds)

Post-quantum security of IBCS protocol

23

𝖠𝖱𝖦 := 𝖨𝖡𝖢𝖲[𝖨𝖮𝖯, 𝖵𝖢]

IOP for language with

- proof length

- query complexity

- round complexity

- soundness error

L
l

𝗊
𝗄

ϵ𝖨𝖮𝖯

Vector commitment scheme with

collapsing error ϵ𝖵𝖢𝖢𝗈𝗅𝗅𝖺𝗉𝗌𝖾

Theorem. ,

 , where .

∀ ϵ > 0
ϵ𝖯𝖰

𝖠𝖱𝖦(t𝖠𝖱𝖦) ≤ ϵ𝖨𝖮𝖯 + 𝗄 ⋅ l ⋅ ϵ𝖵𝖢𝖢𝗈𝗅𝗅𝖺𝗉𝗌𝖾(t𝖵𝖢) + ϵ t𝖵𝖢 = 𝗉𝗈𝗅𝗒 (t𝖠𝖱𝖦 ⋅ l/ϵ)

Quantum analogue of
position binding

IBCS soundness: , where .ϵ𝖠𝖱𝖦(t𝖠𝖱𝖦) ≤ ϵ𝖨𝖮𝖯 + 𝗄 ⋅ ϵ𝖵𝖢(t𝖵𝖢) + ϵ t𝖵𝖢 = O (t𝖠𝖱𝖦 ⋅ l/ϵ)
Extra factor: cost of quantum rewindingl

Technical contribution: We build on [CMSZ21] and more…

Corollary: post-quantum secure succinct arguments in the standard model (no oracles),

with the best asymptotic complexity known.

IOP is statistically sound
Post-quantum already

24

Funky protocol:
Construction from all probabilistic proofs

Funky protocol

IBCS protocol
𝖥𝖨𝖮𝖯

𝖨𝖮𝖯
𝖯𝖢𝖯

𝖥𝖢
𝖵𝖢

Kilian’s protocol

Building blocks

25

[CGKY25]

Building block #2: functional interactive oracle proof (FIOP)

P𝖥𝖨𝖮𝖯(x, w)

b𝖥𝖨𝖮𝖯

V𝖥𝖨𝖮𝖯(x)
Πi

∀i ∈ [𝗄]

𝖺𝗇𝗌 = {βj = αj(Πi)}j∈[𝗊]

Q = {αj}j∈[𝗊] ⊆ Q

Building block #1: query class

-

Q
Q ⊆ {α : Σℓ → 𝔻}

Building block #3: functional commitment scheme (FC)

𝖼𝗆𝖥𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍

P𝖥𝖢 V𝖥𝖢
b𝖥𝖢

Π

𝖼𝗆

α ∈ Q
β = α(Π) ⋮

 rounds𝗄𝖥𝖢

Funky protocol

26

[CGKY25]

P𝖠𝖱𝖦(x, w) V𝖠𝖱𝖦(x)
P𝖥𝖨𝖮𝖯(x, w)

𝖥𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍
V𝖥𝖨𝖮𝖯(x)

βk,i = αk,i(Πk) (βk,i)k∈[𝗄],i∈[𝗊]

P𝖥𝖢 V𝖥𝖢

b𝖥𝖢 b𝖥𝖨𝖮𝖯

b𝖥𝖢 ∧ b𝖥𝖨𝖮𝖯

Π1 𝖼𝗆1

ρ1 ← {0,1}𝗋1

𝖥𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍Π𝗄 𝖼𝗆𝗄

⋮

(αk,i)k∈[𝗄],i∈[𝗊] = V𝖥𝖨𝖮𝖯(x; ρ1, …, ρ𝗄)
ρ𝗄 ← {0,1}𝗋𝗄

⋮ ⋮

(αk,i)k∈[𝗄],i∈[𝗊]

 rounds𝗄

 rounds𝗄𝖥𝖢

Proof string Query class Answer

PCP+VC [Kilian92] 
IOP+VC [BCS16,CDGS23]

point queries

LPCP+LC [LM19] linear queries

PIOP+PC [CHM+20,BFS20]
evaluation queries on 
polynomials

PIOP*+PC* [GWC19]
evaluation queries on 
structured polys

Special cases of the Funky protocol

27

Beyond Funky: Bulletproofs (and other sumcheck-based arguments), linear-only encodings [BCIOP13, GGPR13, Groth16], …

β = Π[α] for α ∈ [ℓ]Π ∈ Σℓ Q𝗉𝗈𝗂𝗇𝗍

Π ∈ 𝔽ℓ β = ∑i∈[ℓ] Π[i] ⋅ α[i] for α ∈ 𝔽ℓQ𝗅𝗂𝗇

Π ∈ 𝔽[X]≤𝖣 β = ∑i∈[ℓ] Π[i] ⋅ αi−1 for α ∈ 𝔽Q𝗉𝗈𝗅𝗒

Π ∈ (𝔽[X]≤𝖣)m+n β = ∑k∈[n] hk(f1(α), ⋯, fm(α)) ⋅ gk(α)

= (f1, …, fm, g1, …, gn)
Q𝗉𝗈𝗅𝗒*

Proof string Query class Answer

PCP+VC [Kilian92] 
IOP+VC [BCS16,CDGS23]

point queries

LPCP+LC [LM19] linear queries

PIOP+PC [CHM+20,BFS20]
evaluation queries on 
polynomials

PIOP*+PC* [GWC19]
evaluation queries on 
structured polys

Special cases of the Funky protocol

28

Beyond Funky: Bulletproofs (and other sumcheck-based arguments), linear-only encodings [BCIOP13, GGPR13, Groth16], …

β = Π[α] for α ∈ [ℓ]Π ∈ Σℓ Q𝗉𝗈𝗂𝗇𝗍

Π ∈ 𝔽ℓ β = ∑i∈[ℓ] Π[i] ⋅ α[i] for α ∈ 𝔽ℓQ𝗅𝗂𝗇

Π ∈ 𝔽[X]≤𝖣 β = ∑i∈[ℓ] Π[i] ⋅ αi−1 for α ∈ 𝔽Q𝗉𝗈𝗅𝗒

Π ∈ (𝔽[X]≤𝖣)m+n β = ∑k∈[n] hk(f1(α), ⋯, fm(α)) ⋅ gk(α)

= (f1, …, fm, g1, …, gn)
Q𝗉𝗈𝗅𝗒* ...

Funky protocol is everywhere

Which security property for FC?

29

Vector Commitments position binding:

Linear Commitments function binding:

Polynomial Commitments

Functional Commitments function binding:

Pr
∄Π : ∀i : ⟨αi, Π⟩ = βi

∧ ∀i : 𝖥𝖢 . 𝖢𝗁𝖾𝖼𝗄(𝗉𝗉, 𝖼𝗆, αi, βi, 𝗉𝖿i) = 1
(𝖼𝗆, (αi, βi, 𝗉𝖿i)i∈[n]) ← A(𝗉𝗉) ≤ ϵ

Pr [
β1 ≠ β2

∧ ∀i : 𝖥𝖢 . 𝖢𝗁𝖾𝖼𝗄(𝗉𝗉, 𝖼𝗆, αi, βi, 𝗉𝖿i) = 1
(𝖼𝗆, α, β1, 𝗉𝖿1, β2, 𝗉𝖿2) ← A(𝗉𝗉)] ≤ ϵ

Pr
∄Π : ∀i : αi(Π) = βi

∧ ∀i : 𝖥𝖢 . 𝖢𝗁𝖾𝖼𝗄(𝗉𝗉, 𝖼𝗆, αi, βi, 𝗉𝖿i) = 1
(𝖼𝗆, (αi, βi, 𝗉𝖿i)i∈[n]) ← A(𝗉𝗉) ≤ ϵ

binding? strong correctness? interpolation binding? extractability?
[KZG10] [AJMMS23] [CHM+20, BFS20]

Earlier in this talk IOP+VC 
ϵ𝖠𝖱𝖦 ≈ + ϵ𝖯𝖡

𝖵𝖢ϵ𝖨𝖮𝖯

[LM19] LPCP+LC 
ϵ𝖠𝖱𝖦 ≈ + ϵ𝖥𝖡

𝖫𝖢ϵ𝖫𝖯𝖢𝖯

Too strong
[CHMMVW20, BFS20] PIOP+PC 
ϵ𝖠𝖱𝖦 ≈ + κ𝖯𝖢

ϵ𝖯𝖨𝖮𝖯

Security of Funky protocol

30

𝖠𝖱𝖦 := 𝖥𝗎𝗇𝗄𝗒[𝖥𝖨𝖮𝖯, 𝖥𝖢]

FIOP for language with

- proof length

- query complexity

- round complexity

- soundness error

L
l

𝗊
𝗄

ϵ𝖥𝖨𝖮𝖯

Functional commitment scheme with

function binding error ϵ𝖥𝖢

Theorem. ,

 , where .

∀ 𝖭 ∈ ℕ
ϵ𝖠𝖱𝖦(t𝖠𝖱𝖦) ≤ ϵ𝖥𝖨𝖮𝖯 + 𝗄 ⋅ ϵ𝖥𝖢(t𝖥𝖢) + 𝗄 ⋅ ϵQ(l, 𝖭) t𝖥𝖢 = O (t𝖠𝖱𝖦 ⋅ 𝖭)

Query class with tail error Q ϵQ

Internal property of
Independent of

Q
𝖥𝖨𝖮𝖯/𝖥𝖢

 recovers the bounds for Kilian’s protocol and IBCS protocolϵQ𝗉𝗈𝗂𝗇𝗍
(l, 𝖭) = l/𝖭 ⟹

TLDR:
- A “tight” security notion for FC schemes
- Concrete and tight bounds using tail errors

Fiat-Shamir security:
From succinct arguments to SNARGs

31

Fiat-Shamir transformation

32

Succinct interactive arguments Succint non-interactive arguments

cm := 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π)

PCP randomness ρ

 from (Q, 𝖺𝗇𝗌, 𝗉𝖿) 𝖵𝖢 . 𝖮𝗉𝖾𝗇

Prover P

P𝖯𝖢𝖯

Verifier V

V𝖯𝖢𝖯

cm := 𝖵𝖢 . 𝖢𝗈𝗆𝗆𝗂𝗍(Π)
ρ := f(cm)

 from (Q, 𝖺𝗇𝗌, 𝗉𝖿) 𝖵𝖢 . 𝖮𝗉𝖾𝗇

Pf

P𝖯𝖢𝖯

Vf

V𝖯𝖢𝖯

Random oracle:

: uniform distribution over

𝒪 = {𝒪λ}λ∈ℕ
𝒪λ {f : {0,1}* → {0,1}λ}

Central question: Is security preserved after the Fiat-Shamir transformation?

In generical no [CY24]: ϵ𝖭𝖠𝖱𝖦(x, t, m) ≤ (m+1)𝗄 ⋅ ϵ𝖠𝖱𝖦(x, t)

RO queries might be superconstant!𝗄

Fiat-Shamir security

33

𝖠𝖱𝖦 := 𝖥𝗎𝗇𝗄𝗒[𝖥𝖨𝖮𝖯, 𝖥𝖢]

FIOP for language with

- proof length

- query complexity

- round complexity

- Fiat-Shamir soundness error

L
l

𝗊
𝗄

ϵ𝖥𝖲
𝖥𝖨𝖮𝖯

Functional commitment scheme with

Fiat-Shamir function binding error ϵ𝖥𝖲𝖥𝖡

𝖥𝖢

Theorem. ,

 , where .

∀ 𝖭 ∈ ℕ

ϵ𝖭𝖠𝖱𝖦(t𝖠𝖱𝖦, m𝖠𝖱𝖦) ≤ ϵ𝖥𝖲
𝖥𝖨𝖮𝖯(O(m𝖠𝖱𝖦)) + 𝗄 ⋅ ϵ𝖥𝖲𝖥𝖡

𝖥𝖢 (t𝖥𝖢, m𝖥𝖢) + 𝗄 ⋅ ϵQ(l, 𝖭) {
t𝖥𝖢 = O (t𝖠𝖱𝖦 ⋅ 𝖭)
m𝖥𝖢 = O (m𝖠𝖱𝖦 ⋅ 𝗄 ⋅ 𝖭)

Query classes with tail error Q ϵQ

A theorem that generalizes everything we saw (except post-quantum)

Corollary: security analysis of Plonk [GWC19] from falsifiable assumption (ARSDH)

(previously: from ARSDH+SplitRSDH)

...

Overview: standard-model analyses

commitment scheme security requirement

IA
RG

 s
ec

ur
ity

Soundness
Fiat-Shamir soundness

34

extractablebinding

Earlier 
IOP+VC 
ϵ𝖠𝖱𝖦 ≈ + ϵ𝖯𝖡

𝖵𝖢ϵ𝖨𝖮𝖯

[LM19] 
LPCP+LC 
ϵ𝖠𝖱𝖦 ≈ + ϵ𝖥𝖡

𝖫𝖢ϵ𝖫𝖯𝖢𝖯

Now 
FIOP+FC 
ϵ𝖥𝖲

𝖠𝖱𝖦 ≈ + ϵ𝖥𝖲𝖥𝖡
𝖥𝖢ϵ𝖥𝖲

𝖥𝖨𝖮𝖯

[CHMMVW20, BFS20] 
PIOP+PC 
ϵ𝖠𝖱𝖦 ≈ + κ𝖯𝖢ϵ𝖯𝖨𝖮𝖯

Funky protocol
- Soundness
- Fiat-Shamir soundness

IBCS protocol
- Soundness
- Private-coin IOPs
- Post-quantum soundness

𝖥𝖨𝖮𝖯

𝖨𝖮𝖯

Open problems

35

𝖯𝖢𝖯

𝖥𝖢
𝖵𝖢

Probabilistic proofs

Commitment schemes
Kilian’s protocol
- Soundness
- Lower bounds on soundness

Post-quantum security?

Expected-time regime?

Practical security in idealized models?

Quantum analogue?

Kilian vs. Sigma protocols?

Standard model Fiat-Shamir?

Thank you!

Public-coin IOPs?

References
[BG08]: Boaz Barak and Oded Goldreich. “Universal Arguments and their Applications”. CCC ’02.

[BL02]: Boaz Barak and Yehuda Lindell. “Strict polynomial-time in simulation and extraction”. STOC ‘02.

[BCS16]: Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. TCC ’16-B.

[CDGS23]: Alessandro Chiesa, Marcel Dall’Agnol, Ziyi Guan, and Nicholas Spooner. On the Security of Succinct Interactive Arguments from Vector Commitments. ePrint Report 2023/1737.

[CDGSY24]: Alessandro Chiesa, Marcel Dall’Agnol, Ziyi Guan, Nicholas Spooner, and Eylon Yogev. “Untangling the Security of Kilian’s Protocol: Upper and Lower Bounds”. TCC ’24.

[CDDGS24]: Alessandro Chiesa, Marcel Dall’Agnol, Zijing Di, Ziyi Guan, and Nicholas Spooner. “Quantum Rewinding for IOP-Based Succinct Arguments”. arXiv:2411.05360.

[CGKY25]: Alessandro Chiesa, Ziyi Guan, Christian Knabenhans, Zihan Yu. “On the Fiat–Shamir Security of Succinct Arguments from Functional Commitments”. ePrint Report 2025/902.

[CMSZ21]: Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. “Post-Quantum Succinct Arguments: Breaking the Quantum Rewinding Barrier”. FOCS ’21.

[CY24]: Alessandro Chiesa and Eylon Yogev. Building Cryptographic Proofs from Hash Functions. 2024. URL: https://github.com/hash-based-snargs-book.

[GH97]: Oded Goldreich and Johan Håstad. On the Complexity of Interactive Proofs with Bounded Communication. 1998. Information Processing Letters.

[GWC19]: Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over Lagrangebases for Oecumenical Noninteractive arguments of Knowledge. ePrint Report 2019/953.

[Kilian92]: Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. STOC ’92.

[LMS22]: Russell W. F. Lai, Giulio Malavolta, and Nicholas Spooner. “Quantum Rewinding for Many-Round Protocols”. TCC ’22.

[PS00]: David Pointcheval and Jacques Stern. “Security Arguments for Digital Signatures and Blind Signatures”. Journal of Cryptology 13 (2000), 361–396.

[Unr12]: Dominique Unruh. “Quantum proofs of knowledge”. EUROCRYPT ’12.

[Unr16b]: Dominique Unruh. “Computationally binding quantum commitments”. EUROCRYPT ’16.

[Wat06]: John Watrous. “Zero-knowledge against quantum attacks”. STOC ’06.

36

Security of Funky
from FPCP and non-interactive FC

37

38

Goal:

Security reduction for Funky[FPCP, FC]

 (for FPCPs and non-interactive FCs)

P̃𝖠𝖱𝖦 ℜ

P̃𝖥𝖯𝖢𝖯

P̃𝖥𝖢
𝖲𝗈𝗅𝗏𝖾𝗋Q

 , where ϵ𝖠𝖱𝖦(t𝖠𝖱𝖦) ≤ ϵ𝖥𝖨𝖮𝖯 + 𝗄 ⋅ ϵ𝖥𝖢(t𝖥𝖢) + 𝗄 ⋅ ϵQ(l, 𝖭) t𝖥𝖢 = O (t𝖠𝖱𝖦 ⋅ 𝖭)

Security reduction for Funky[FPCP, FC]

39

Reductor ℜP̃𝖠𝖱𝖦

𝖼𝗆

P̃𝖠𝖱𝖦

queries 
Q0 = ∅

solutions 
S0 = Σℓ

Security reduction for Funky[FPCP, FC]

40

Reductor ℜP̃𝖠𝖱𝖦

𝖼𝗆
ρ1

(Q1, 𝖺𝗇𝗌1, 𝗉𝖿1)
P̃𝖠𝖱𝖦

queries 
Q1 ⊆ Q

solutions 
S1

S1 = {Π̃ | ∀α1,j ∈ Q1, α1,j(Π̃) = β1,j}

Security reduction for Funky[FPCP, FC]

41

Reductor ℜP̃𝖠𝖱𝖦

𝖼𝗆
ρ2

P̃𝖠𝖱𝖦 S2 = {Π̃ | ∀α2,j ∈ Q2, α2,j(Π̃) = β2,j} ∩ S1

queries 
∪i Qi ⊆ Q

solutions 
S2

(Q2, 𝖺𝗇𝗌2, 𝗉𝖿2)

Security reduction for Funky[FPCP, FC]

42

Reductor ℜP̃𝖠𝖱𝖦

𝖼𝗆
ρ𝖭

P̃𝖠𝖱𝖦 S𝖭 = {Π̃ | ∀α𝖭,j ∈ Q𝖭, α𝖭,j(Π̃) = β𝖭,j} ∩ S𝖭−1

queries 
∪i Qi ⊆ Q

solutions 
S𝖭

(Q𝖭, 𝖺𝗇𝗌𝖭, 𝗉𝖿𝖭)

?

Output Π̃ ← 𝖲𝗈𝗅𝗏𝖾𝗋Q((αi,j, βi,j)i∈[𝖭],j∈[𝗊])

Outputs Π̃ ∈ S𝖭

43

Security reduction for Funky[FPCP, FC]

 Pr [⟨P̃, V(x)⟩ = 1] ≤ Pr
Sample ρ

𝖥𝖯𝖢𝖯 verifier accepts: VΠ̃(x; ρ) = 1
𝖠𝖱𝖦 verifier accepts: V(x; ρ; Q, 𝖺𝗇𝗌, 𝗉𝖿)⟩ = 1

Produced by the reductor ℜP̃𝖠𝖱𝖦

Produced by a -time adversary given t𝖠𝖱𝖦 P̃𝖠𝖱𝖦 ρ

Pr
Sample ρ

𝖥𝖯𝖢𝖯 verifier rejects: VΠ̃(x; ρ) ≠ 1
𝖠𝖱𝖦 verifier accepts: V(x; ρ; Q, 𝖺𝗇𝗌, 𝗉𝖿)⟩ = 1

+

FPCP soundness
≤ ϵ𝖥𝖯𝖢𝖯(x)

≤ ϵ𝖥𝖢(t𝖥𝖢) + ϵQ(ℓ, 𝖭)
Security reduction lemma

- Either is inconsistent with ; or

- contains “new queries”

(Q, 𝖺𝗇𝗌) Π̃
(Q, 𝖺𝗇𝗌)

 (no solution)
→ FC verifier accepts all FC proofs
S𝖭+1 = ∅

→ tail error of the query class
S𝖭+1 ≠ ∅ ∧ S𝖭+1 ≠ S𝖭

Q

i = 𝖭i = 2i = 𝖭 + 1

Security reduction lemma

44

queries ∪i Qi solutions Si

[∄Π̃ : ∀α ∈ ∪i Qi : α(Π̃) = 𝖺𝗇𝗌[α]
 Yet all FC checks pass]Pr ≤ ϵ𝖥𝖢(t𝖥𝖢)

Function binding
Case 1:

Case 2: [S𝖭+1 ≠ ∅ ∧ S𝖭+1 ≠ S𝖭]Pr ≤ ϵQ(ℓ, 𝖭)
Tail error

i = 2i = 𝖭 + 1
 (no solution)

→ FC verifier accepts all FC proofs
S𝖭+1 = ∅

→ tail error of the query class
S𝖭+1 ≠ ∅ ∧ S𝖭+1 ≠ S𝖭

Q

Tail error well-behaved for reasonable query classes:
For large , unlikely that the -th rewind gives new info𝖭 (𝖭 + 1)

Internal property of
Independent of

Q
𝖥𝖨𝖮𝖯/𝖥𝖢

