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Interactive proofs
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⋮
Perfect completeness: For every instance ,


.

x ∈ L
Pr [⟨P(x, w), V(x)⟩ = 1] = 1

Prover

P(x, w)

Verifier

V(x)

Is ?x ∈ L

Soundness: For every instance  and adversary , 


.

x ∉ L P̃
Pr [⟨P̃, V(x)⟩ = 1] ≤ ϵ(x)

Basic efficiency metric: COMMUNICATION COMPLEXITY (number of bits exchanged during the interaction). 

Limitation: -complete languages do not have IPs with  (or else the language would be easy). 

(Indeed, [GH97] proved that, in general, .)

𝖭𝖯 𝖼𝖼 ≪ |w |
𝖨𝖯[𝖼𝖼] ⊆ 𝖡𝖯𝖳𝖨𝖬𝖤[2𝖼𝖼]



Interactive arguments
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Interactive proofs with computational soundness

Computational soundness: For every , security parameter , and -bounded adversary , 


.

x ∉ L λ ∈ ℕ t𝖠𝖱𝖦 P̃

Pr [⟨P̃, V(1λ, x)⟩ = 1] ≤ ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦)

relaxes the

soundness guarantee

of interactive proofs

AMAZING: there exist interactive arguments for NP with  (given basic cryptography)𝖼𝖼 ≪ |w |

⋮

Prover

P(1λ, x, w)

Verifier

V(1λ, x)

Is ?x ∈ L

These are known as Succinct Interactive Arguments.

Limitations on the communication complexity of interactive proofs no longer hold,



Why study succinct interactive arguments?
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A fundamental primitive known to exist assuming only simple cryptography (e.g. collision-resistant hash functions).

Succinct arguments play a key role in notable applications (e.g., zero-knowledge with non-black-box simulation, malicious MPC, ...).

They also serve as a stepping stone towards succinct non-interactive arguments (SNARGs).

Recall: SNARGs for NP cannot be realized via a black-box reduction to a falsifiable assumption [GW11].

The starting point of this talk is:

Often (though not always): SNARG = succinct interactive argument + non-falsifiable assumption / idealized model

The savings in communication ( ) or even verification ( ) are remarkably useful.𝖼𝖼 ≪ |w | 𝗍𝗂𝗆𝖾(V ) ≪ |w |

Kilian's protocol, the first and simplest succinct argument



Kilian’s protocol
Building block #1: probabilistically checkable proof (PCP)
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PCP prover

P

PCP verifier

V
Oracle string Π ∈ Σl

 uses  bits of randomness 
and queries  locations of 
V 𝗋

𝗊 Π

m ∈ Σl

Query set Q ⊆ [l]
Open phase

If  then .𝖺𝗇𝗌 := m[Q] 𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1

𝖺𝗇𝗌

Commit phase

(𝖼𝗆, Q, Q′ , 𝖺𝗇𝗌, 𝖺𝗇𝗌′ , 𝗉𝖿, 𝗉𝖿′ ) Adv

Position binding

Pr

𝖢𝗁𝖾𝖼𝗄(cm, Q′ , 𝖺𝗇𝗌′ , 𝗉𝖿′ ) = 1

≤ ϵ𝖵𝖢

Commit
cm

Open from cm 𝗉𝖿

cm := 𝖢𝗈𝗆𝗆𝗂𝗍(Π)

PCP verifier randomness ρ

 from (Q, 𝖺𝗇𝗌, 𝗉𝖿) 𝖮𝗉𝖾𝗇

Prover P

P

Verifier V

V

abstraction for a succinct commitment

with local openings (e.g. Merkle tree)

Building block #2: vector commitment scheme (VC)

The protocol:

[Kilian92]

𝖢𝗁𝖾𝖼𝗄(cm, Q, 𝖺𝗇𝗌, 𝗉𝖿) = 1



Fundamental question: 
What is the security of Kilian’s protocol?



What is the security of Kilian’s protocol?
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Previously:

Prover P(x, w)

P

Verifier V(x)

V

: Commitment to a PCP string with Merkle treecm

: PCP verifier randomnessρ

:

Query set, answers, and their authentication paths
(Q, 𝖺𝗇𝗌, 𝗉𝖿)

non-trivial restrictions on the PCP.

Our question: Given any PCP and any vector commitment scheme (VC),

what is the security of Kilian’s protocol wrt the security of the PCP and the VC? 

• [Kilian92] gives an informal analysis. 

• [BG08] proves security of Kilian’s protocol assuming the underlying PCP is non-adaptive and reverse-samplable.

Their analysis is NOT tight: roughly  (multiplicative constant overhead)ϵ𝖠𝖱𝖦 ≤ 8 ⋅ ϵ𝖯𝖢𝖯 + 3 ϵ𝖵𝖢

• Kilian's protocol is widely used across cryptography but lacks a security proof in the general case



Our result on Kilian’s protocol
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𝖵𝖢𝖯𝖢𝖯

𝖠𝖱𝖦 := 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]

PCP for language  with 

- proof length 

- query complexity  

- soundness error 

L
l

𝗊
ϵ𝖯𝖢𝖯

Vector commitment scheme with 

position binding error ϵ𝖵𝖢

For every  and , 

.

x ∉ L ϵ > 0
ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x)+ϵ𝖵𝖢(λ, l(x), 𝗊(x), t𝖵𝖢)+ϵ

Theorem 1.

t𝖵𝖢 = O ( l
ϵ

⋅ t𝖠𝖱𝖦) Open: Is the  overhead tight?
l
ϵ



On the price of rewinding
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• Suppose  with .


• Suppose  (achieved by ideal Merkle trees). 


• Setting :


- 


- 


• Set  to achieve the desired bound. 

ϵ𝖯𝖢𝖯 = 2−42 l = 230

ϵ𝖵𝖢 = (λ, l, 𝗊, t𝖵𝖢) ≤
t2
𝖵𝖢

2λ

ϵ := 2−42

t𝖵𝖢 ≤ 4 ⋅
230

2−42
⋅ t𝖠𝖱𝖦 < 280 ⋅ t𝖠𝖱𝖦

ϵ𝖵𝖢 ≤
(280 ⋅ t𝖠𝖱𝖦)2

2λ
= 2160−λ ⋅ t2

𝖠𝖱𝖦 = 2280−λ

λ = 322

For every  and , 
.

x ∉ L ϵ > 0
ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x) + ϵ𝖵𝖢(λ, l(x), 𝗊(x), t𝖵𝖢) + ϵ

t𝖵𝖢 = O ( l
ϵ

⋅ t𝖠𝖱𝖦) For every , 


.

x ∉ L

ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x) +
t2
𝖠𝖱𝖦

2λ

• Suppose 


• 


• Set  to achieve the desired bound. 

ϵ𝖯𝖢𝖯 = 2−42

ϵ𝖵𝖢 ≤
t2
𝖠𝖱𝖦

2λ
= 2120−λ

λ = 162

Standard model Random oracle model

- If the hash function is assumed ideal then extraction is straightline.

- If the hash function is merely collision-resistant then extraction is rewinding.

These computations illustrate the PRICE OF REWINDING.

[CY24]

Goal: achieve  against adversaries of size  for Kilian's protocol.ϵ𝖠𝖱𝖦 = 2−40 260
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Beyond Kilian: the VC-Based Approach
We understand Kilian’s protocol    ✅

Vector CommitmentProbabilistic Proof

Succinct Interactive Argument

Kilian’s protocol is an example of a more general paradigm: the VC-Based Approach

BASIC QUESTIONS: 
How general is this paradigm? 

When can we prove its security?
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The case of public-coin IOPs                      [1/2]
Interactive oracle proofs (IOPs) are a multi-round generalization of PCPs [BCS16,RRR16].

IOP prover

P

IOP verifier

V
Oracle string Π1 ∈ Σl1

Randomness ρ1 ∈ {0,1}𝗋𝟣

Oracle string Π𝗄 ∈ Σl𝗄

Randomness ρ𝗄 ∈ {0,1}𝗋𝗄

⋯

Public-coin IOP

 queries  locations of  
for every .
V 𝗊i Πi

i

An exciting line of works achieve public-coin IOPs with excellent efficiency. (In contrast, known PCPs have poor efficiency.)

Public-coin IOPs play a key role in the construction of efficient succinct (interactive & non-interactive) arguments.
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: Commitment to  with VCcm1 Π1

: IOP verifier randomness in round ρ1 1

Prover P(x, w)

IOP prover

P

Verifier V(x)

IOP verifier

V⋯
: Commitment to  with VCcm𝗄 Π𝗄

: IOP verifier randomness in round ρ𝗄 𝗄

:

Query sets, answers, and their VC proofs
((Qi, 𝖺𝗇𝗌i, 𝗉𝖿i))i

The case of public-coin IOPs                      [2/2]

The IBCS protocol is a key ingredient in a line of work on linear-time succinct arguments [BCG20; RR22; HR22].

PROBLEM: there is no security analysis of the IBCS protocol. 😅 

The VC-based approach naturally extends to public-coin IOPs.

IBCS protocol

interactive variant of the BCS protocol [BCS16]

(public-coin IOP + random oracle = SNARG)



Our result on the IBCS protocol
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𝖵𝖢IOP

𝖠𝖱𝖦 := 𝖨𝖡𝖢𝖲[𝖨𝖮𝖯, 𝖵𝖢]

Public-coin IOP for language  with 

- total proof length 

- total query complexity  

- soundness error 

- round complexity 

L
l

𝗊
ϵ𝖨𝖮𝖯
𝗄

Vector commitment scheme with 

position binding error ϵ𝖵𝖢

For every  and , 

.

x ∉ L ϵ > 0
ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖨𝖮𝖯(x)+ϵ𝖵𝖢(λ, l(x), 𝗊(x), t𝖵𝖢)+ϵ

Theorem 2.

t𝖵𝖢 = O ( 𝗄 ⋅ l
ϵ

⋅ t𝖠𝖱𝖦)can improve to  and l𝗆𝖺𝗑 𝗊𝗆𝖺𝗑



Beyond public-coin IOPs?
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Why should the VC-based approach "care" if the underlying IOP is public-coin?

IOP prover

P

IOP verifier

V
Oracle string Π1 ∈ Σl1

Message m1

Oracle string Π𝗄 ∈ Σl𝗄

Message m𝗄

⋯

Private-coin IOP

-  queries  locations of  for every .

-In each round ,  can query .

- ’s messages depend on its private randomness 

 and answers to its previous queries.

V 𝗊i Πi i
i V Π1, …, Πi

V
ρ

In general, a private-coin IOP looks like this:

Applying the VC-based approach to a private-coin IOP directly leads to this protocol...



Finale protocol
The VC-based approach for private-coin IOPs

: Commitment to  with VCcm1 Π1

: IOP verifier query sets in round Q1 1

Prover P(x, w)

IOP prover

P

Verifier V(x)

IOP verifier

V

⋯
: Commitment to  with VCcm𝗄 Π𝗄

: Answers and proofs for (ans1, pf1) Q1

: IOP verifier query sets in round Q𝗄 𝗄

: IOP verifier message in round m1 1

: Answers and proofs for (ans𝗄, pf𝗄) Q1

: IOP verifier message in round m𝗄 1

15

Boldface because in each round ,  
contains verifier’s queries to .

i Qi
Π1, …, Πi

Is the Finale protocol secure? 
No. If the security of the IOP relies on queries being secret, 
then the Finale protocol is NOT secure. 

(e.g. IOP verifier accepts if IOP prover guesses all its queries)

Clearly, the Finale protocol is secure whenever

the underlying IOP is public-query... right?

Def: An IOP is public-query if queries can be learned by the 
prover (in "real-time") without breaking security.



Our result on Finale protocol
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𝖵𝖢IOP

𝖠𝖱𝖦 := 𝖥𝗂𝗇𝖺𝗅𝖾[𝖨𝖮𝖯, 𝖵𝖢]

Public-query IOP for language  with 

- total proof length  

- total query complexity 

- soundness error 

- round complexity 

- RCS with running time  

L
l

𝗊
ϵ𝖨𝖮𝖯
𝗄

tS

Vector commitment scheme with 

position binding error ϵ𝖵𝖢

For every  and , 

.

x ∉ L ϵ > 0
ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖨𝖮𝖯(x)+ϵ𝖵𝖢(λ, l(x), 𝗊(x), t𝖵𝖢)+ϵ

Theorem 3.

t𝖵𝖢 = O ( 𝗄 ⋅ l
ϵ

⋅ (t𝖠𝖱𝖦 + tS))can improve to  and l𝗆𝖺𝗑 𝗊𝗆𝖺𝗑

Random Continuation Sampler 
(will define later)



Summary of results

Open question! (more on this later)
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Private-coin IOPs

Public-query IOPs

Theorem 2 for the IBCS protocol

Theorem 3 for the Finale protocol

VC-based approach is NOT secure

Public-query IOPs with RCS

Public-coin IOPs

PCPs
Theorem 1 for Kilian’s protocol



Kilian’s protocol 
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Security from rewinding [1/2]
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Goal: relate the soundness error of 

to the soundness error of  and the position binding error of .

𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
𝖯𝖢𝖯 𝖵𝖢

𝖵𝖢

P̃

𝖯𝖢𝖯

Position binding

Soundness

 is forced to open locations of the committed PCP string P̃ Π̃

Rewind  a number of times to get a bunch of 

 recover  

 upper bound the success probability of  by 

soundness of PCP

P̃ (Q, 𝖺𝗇𝗌, 𝗉𝖿)
⟹ Π̃
⟹ Π̃

Malicious prover of 𝖪𝗂𝗅𝗂𝖺𝗇[𝖯𝖢𝖯, 𝖵𝖢]
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How to rewind?

Reductor ℛP̃(cm, ϵ)
cm
ρ1

(Q1, ans1, pf1)

ρ2

(Q2, ans2, pf2)

⋮
ρ𝖭

(Q𝖭, ans𝖭, pf𝖭)

Security from rewinding [2/2]

Malicious Prover P̃

P Recover Π̃
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Soundness of Kilian’s protocol

Goal:    Pr [⟨P̃, V(x)⟩ = 1]≤ ϵ𝖯𝖢𝖯(x) + ϵ𝖵𝖢(λ, l, 𝗊, t𝖵𝖢) + ϵ

Pr
Sample ρ

𝖯𝖢𝖯 verifier rejects: VΠ̃(x, ρ) ≠ 1
𝖠𝖱𝖦 verifier accepts: V(x, ρ, Q, 𝖺𝗇𝗌, 𝗉𝖿)⟩ = 1

Pr
Sample ρ

𝖯𝖢𝖯 verifier accepts: VΠ̃(x, ρ) = 1
𝖠𝖱𝖦 verifier accepts: V(x, ρ, Q, 𝖺𝗇𝗌, 𝗉𝖿)⟩ = 1

Soundness of PCP ✅  
⟹ ≤ ϵ𝖯𝖢𝖯(x)

Security reduction lemma ⟹ ≤ ϵ𝖵𝖢(λ, l, 𝗊, t𝖵𝖢) + ϵ

t𝖵𝖢 = O ( l
ϵ

⋅ t𝖠𝖱𝖦)

Produced by the reductor ℛP̃

Produced by a -time 
adversary  given 

t𝖠𝖱𝖦
P̃ ρ



Proof of the Security reduction lemma

22

Sample ρ
𝖯𝖢𝖯 verifier rejects: VΠ̃(x, ρ) ≠ 1
𝖠𝖱𝖦 verifier accepts: V(x, ρ, Q, 𝖺𝗇𝗌, 𝗉𝖿)⟩ = 1

⟹ [∃ q s.t. Π̃[q] ≠ 𝖺𝗇𝗌[q]
 Yet both VC check pass] ∨ [∃ q s.t. Π̃[q] is unfilled

Yet q ∈ Q ]
VC position binding ⟹ ≤ ϵ𝖵𝖢(λ, l, 𝗊, t𝖵𝖢) Missing queries 

-For each , the probability that  is not queried by the reductor  
but is queried by the ARG verifier  is : 


‣Not hitting  for  times but hit it for the -th time

-Probability that there exists such a 

-Setting  

-  also depends on : VC adversary runs the reductor 

q q ℛ
V 1/𝖭

q 𝖭 (𝖭 + 𝟣)
q ≤ l/𝖭

𝖭 := l/ϵ ⟹ ≤ ϵ
t𝖵𝖢 𝖭 ℛ

t𝖵𝖢 = O ( l
ϵ

⋅ t𝖠𝖱𝖦)



Recap: Security of Kilian’s protocol
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On the  overhead: 

- Rewinding  times is necessary (maybe all PCP queries but  are fixed)

- Some rewinds may yield garbage so need  more times as buffer


‣ The query answers were found in previous rewinds

‣ VC check does not accept the query answers


Wonderful open question: is the overhead tight or not?

l
ϵ

l 1
1/ϵ

For every  and , 

.

x ∉ L ϵ > 0
ϵ𝖠𝖱𝖦(λ, x, t𝖠𝖱𝖦) ≤ ϵ𝖯𝖢𝖯(x) + ϵ𝖵𝖢(λ, l(x), 𝗊(x), t𝖵𝖢) + ϵ

t𝖵𝖢 = O ( l
ϵ

⋅ t𝖠𝖱𝖦)

Why 30 years for a security proof of Kilian's protocol? 
- The focus of the security analysis of [BG08] is specific for "universal arguments"


‣ Do not have a polynomial bound on the size of the hash tree used by .

‣ PCP must be (efficiently) reverse-samplable.


- The intuition for the security of Kilian's protocol is clear but achieving a general 
security analysis of it has (bizarrely) not been done until this work

P̃



IBCS protocol 
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Security from rewinding
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How to rewind to recover ?Π̃i
cm1

ρ1

cmi−1

ρi−1

⋮

cmi
Reductor ℛP̃(cm, ϵ)

ρ1,i

⋮
cm1,𝗄

ρ1,𝗄

((Q1,i, ans1,i, pf1,i))i∈[𝗄]

ρ𝖭,i

⋮
cm𝖭,𝗄

ρ𝖭,𝗄

((Q𝖭,i, ans𝖭,i, pf𝖭,i))i∈[𝗄]

⋯

Malicious Prover P̃

P



Security reduction lemma
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Pr

Sample ρ

𝖨𝖮𝖯 verifier rejects: V(Π̃1,…,Π̃𝗄)(x, ρ) ≠ 1
𝖠𝖱𝖦 verifier accepts: V(x, ρ, ((Qi, 𝖺𝗇𝗌i, 𝗉𝖿i))i)⟩ = 1

≤ ϵ𝖵𝖢(λ, l, 𝗊, t𝖵𝖢) + ϵ

Pr [∃ i, q s.t. Π̃i[q] ≠ 𝖺𝗇𝗌i[q]
 Yet both VC check pass ] Pr [∃ i, q s.t. Π̃i[q] is unfilled

Yet q ∈ Qi ]
VC position binding ⟹ ≤ ϵ𝖵𝖢(λ, l, 𝗊, t𝖵𝖢) Missing queries ⟹ ≤ ϵ

t𝖵𝖢 = O ( 𝗄 ⋅ l
ϵ

⋅ t𝖠𝖱𝖦)



How about private-coin IOPs?
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How to rewind?
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Key: the reductor  must sample consistent random 
continuations of the argument interaction.

ℛ

• Kilian reductor: sample uniform randomness 
of the PCP verifier


• IBCS reductor: sample uniform randomness 
of the IOP verifier starting from round i

cm1

ρ1

cmi−1

ρi−1

⋮

cmi

ρ1,i

⋮
cm1,𝗄

ρ1,𝗄

((Q1,i, ans1,i, pf1,i))i∈[𝗄]

Reductor ℛP̃(cm, ϵ)
ρ𝖭,i

⋮
cm𝖭,𝗄

ρ𝖭,𝗄

((Q𝖭,i, ans𝖭,i, pf𝖭,i))i∈[𝗄]

⋯

Malicious Prover P̃

P

Security from rewinding [1/2]
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Security from rewinding [2/2]
Key: given partial interaction transcript, the reductor  must finish

the interaction consistently (with respect to the unknown private verifier randomness)


 Random continuation sampler (RCS)

ℛ

⟹

Malicious Prover P̃

P

cm1

Q1
(ans1, pf1)

m1

⋮
cmi

Q𝖭,iQ1,i
(ans1,i, pf1,i)

m1,i

cm1,𝗄
Q1,𝗄

(ans1,𝗄, pf1,𝗄)
m1,𝗄

⋮

(ans𝖭,i, pf𝖭,i)
m𝖭,i

cm𝖭,𝗄
Q𝖭,𝗄

(ans𝖭,𝗄, pf𝖭,𝗄)
m𝖭,𝗄

⋮
⋯

Reductor ℛP̃(cm, ϵ)Random continuation sampler

Trivial inefficient RCS:

- Brute force over all possible randomness and uniformly sample a consistent one. 
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Security reduction lemma

Pr

Fix ρ

𝖨𝖮𝖯 verifier rejects: V(Π̃1,…,Π̃𝗄)(x, ρ) ≠ 1
𝖠𝖱𝖦 verifier accepts: V(x, ρ, ((Qi, 𝖺𝗇𝗌i, 𝗉𝖿i))i)⟩ = 1

≤ ϵ𝖵𝖢(λ, l, 𝗊, t𝖵𝖢) + ϵ

Pr [∃ i, q s.t. Π̃i[q] ≠ 𝖺𝗇𝗌i[q]
 Yet both VC check pass ] Pr [∃ i, q s.t. Π̃i[q] is unfilled

Yet q ∈ Qi ]
VC position binding ⟹ ≤ ϵ𝖵𝖢(λ, l, 𝗊, t𝖵𝖢) Missing queries ⟹ ≤ ϵ

t𝖵𝖢 = O ( 𝗄 ⋅ l
ϵ

⋅ (t𝖠𝖱𝖦 + tS))



Open question

Observation: there is a public-query IOP without RCS. 

     (Hence our analysis does NOT cover all public-query IOPs.)


A public-query IOP that does not admit an RCS:

 - Consider  to be IOP verifier’s private randomness.

 - The -th message of the IOP verifier is .

 - Hard for any efficient algorithm to sample  given prior rounds.

r = (r1, …, r𝗄)
i mi := 𝖯𝖱𝖦(ri)

mi

Unknown: when does Finale stop working? 
Is RCS necessary to show security of Finale? 
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Private-coin IOPs

Public-query IOPs

IBCS protocol

Finale protocol

Vector commitment based approach doesn’t work!

Public-query IOPs with RCS

Public-coin IOPs

PCPs
Kilian’s protocol

Question: Is there a different analysis that could cover them all?


A conjecture: No.  (black-box reduction  rewinding  RCS)


A partial result:   has RCS iff  has RCS. 

⟹ ⟹

𝖥𝗂𝗇𝖺𝗅𝖾[𝖨𝖮𝖯, 𝖵𝖢] 𝖨𝖮𝖯
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Thank you!


https://eprint.iacr.org/2023/1737

https://eprint.iacr.org/2023/1737

