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Random oracle model

2

Random oracle 

For every ,  is the uniform distribution over all functions .

𝒪 := {𝒪ℓ}ℓ∈ℕ
ℓ ∈ ℕ 𝒪ℓ f : {0,1}* → {0,1}ℓ

fAlgorithm 𝖠

Query q ∈ {0,1}*

f(q)



Verifiable Delay Function (VDF)

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳  queries𝗍 𝗍 ≪ 𝖳

Completeness. For every security parameter  and input , 


.

λ x

Pr [𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1
f ← 𝒪(λ)

(y, π) ← 𝖤𝗏𝖺𝗅 f(x)] = 1

Computational Uniqueness. For every security parameter , input , and -query adversary ,


.

λ x 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏

Pr
y ≠ 𝖤𝗏𝖺𝗅 f(x)
∧ 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1

f ← 𝒪(λ)
(y, π) ← 𝖠𝖽𝗏 f(x)

≤ 𝗇𝖾𝗀𝗅(λ)
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Sequentiality. For every security parameter , input , and -round -query adversary ,


.

λ x 𝗉𝗈𝗅𝗒(𝗍) 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏

Pr [y = 𝖤𝗏𝖺𝗅 f(x)
f ← 𝒪(λ)

(y, π) ← 𝖠𝖽𝗏 f(x)] ≤ 𝗇𝖾𝗀𝗅(λ)



Why study VDF?

4

Randomness beacon An ideal service that regularly publish randomness

that no one can predict/manipulate

Previous approach: 

- Apply a randomness extractor to stock prices;

- Issue: stock prices can be manipulated to bias the output randomness.

Using VDF: because of the delay (sequentiality), adversaries cannot quickly compute output randomness to 
decide how to manipulate the sources (stock prices).

Blockchain: leader election Select the participant that determines the next block

- Unpredictability (sequentiality): adversaries do not know the next leader until shortly before the announcement.

- Uniqueness: exactly one leader is chosen each time.



Our result
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Main Theorem. Consider  in the random oracle model (ROM). 

There exists a -round -query adversary  that breaks the sequentiality of .

𝖵𝖣𝖥 = (𝖤𝗏𝖺𝗅, 𝖵𝖾𝗋𝗂𝖿𝗒)
O(𝗍) O(𝗍 ⋅ 𝖳) 𝖠𝖽𝗏 𝖵𝖣𝖥

Verifiable delay functions do not exist in the random oracle model! 
No black-box constructions of VDFs from OWF, OWP, CRHF, etc. 

Cryptography is necessary for VDF constructions!

No adversary can find 
alternative solutions.

No query-bounded adversary 
can find alternative solutions 

with non-negl. probability.

Perfect Completeness Imperfect Completeness

Perfect 
Uniqueness

Computational 
Uniqueness

[MSW20]: ❌ ROM

Main Theorem: ❌ ROM Main Theorem: ❌ ROM

[DGMV20]: ❌ tight VDFs in ROM

[RSS20]: ❌ cyclic groups of known orders


[EFKP20]: ✅ ROM + repeated squaring

Main Theorem: ❌ ROM

Main Theorem: ❌ ROM



Warm-up: perfect uniqueness
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Recap: perfectly unique VDFs in the ROM
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𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳  queries𝗍 𝗊 ≪ 𝖰

Perfect Uniqueness. For every security parameter , input , and unbounded adversary ,


.

λ x 𝖠𝖽𝗏

Pr
y ≠ 𝖤𝗏𝖺𝗅 f(x)
∧ 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1

f ← 𝒪(λ)
(y, π) ← 𝖠𝖽𝗏 f(x)

= 0

Completeness. For every security parameter  and input , 


.

λ x

Pr [𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1
f ← 𝒪(λ)

(y, π) ← 𝖤𝗏𝖺𝗅 f(x)] = 1

Sequentiality. For every security parameter , input , and -round -query adversary ,


.

λ x 𝗉𝗈𝗅𝗒(𝗍) 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏

Pr [y = 𝖤𝗏𝖺𝗅 f(x)
f ← 𝒪(λ)

(y, π) ← 𝖠𝖽𝗏 f(x)] ≤ 𝗇𝖾𝗀𝗅(λ)

i.e. For every  and ,  accepts one and only one output .f x 𝖵𝖾𝗋𝗂𝖿𝗒 f(x) y



Brief detour: decision tree algorithms
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Random oracle 

For every ,  is the uniform distribution over all functions .

𝒪 := {𝒪ℓ}ℓ∈ℕ
ℓ ∈ ℕ 𝒪ℓ f : {0,1}* → {0,1}ℓ

fAlgorithm 𝖠

Query q ∈ {0,1}*

f(q)

𝖠(x)
First RO query

All possible answers
Second RO query

⋮

Accepting leavesRejecting leaves



Set of all RO functions

Unique y f

 partitions random oracles𝖵𝖾𝗋𝗂𝖿𝗒(x, ⋅ )
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𝖵𝖾𝗋𝗂𝖿𝗒(x, y1)

Every RO function  in this rectangle satisfies . f 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y) = 1

All functions consistent with leaf
Leaf: a partial function with at most  locations fixed.𝗍

𝖵𝖾𝗋𝗂𝖿𝗒(x, y2) 𝖵𝖾𝗋𝗂𝖿𝗒(x, y3)



Adversary that breaks sequentiality
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: set of all RO functions partitioned using {0,1}* 𝖵𝖾𝗋𝗂𝖿𝗒

f′ 

:

1. For :


2. Output .

𝖠𝖽𝗏f(x)
i ∈ [2𝗍 + 1]

𝖬𝖺𝗃𝗈𝗋𝗂𝗍𝗒(y1, …, y2𝗍+1)

f

 rounds of queries

At most  queries each round

2𝗍 + 1
𝖳

a. Pick  consistent with current view of . 

b. Compute .

c. Let  be the query set of .

d. Query  with  in one round. 

f′ ∈ {0,1}* f
y′ := 𝖤𝗏𝖺𝗅 f′ (x)

𝖰𝖤𝗏𝖺𝗅( f′ , x) 𝖤𝗏𝖺𝗅 f′ (x)
f 𝖰𝖤𝗏𝖺𝗅( f′ , x)

y

y′ 

-    queries at least one new position .

• Otherwise, , contradicting perfect uniqueness.


-    At most  iterations have .

y ≠ y′ ⟹ 𝖠𝖽𝗏 q ∈ 𝖰𝖵𝖾𝗋𝗂𝖿𝗒( f, x, y)∖𝖰i
𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y′ ) = 𝖵𝖾𝗋𝗂𝖿𝗒 f′ (x, y′ ) = 1

|𝖰𝖵𝖾𝗋𝗂𝖿𝗒( f, x, y) | ≤ 𝗍 ⟹ 𝗍 y′ ≠ y

View of  at the beginning of iter. f i

Answer to  is q 0
Answer to  is q 1



Computational uniqueness
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Recap: computationally unique VDFs in the ROM
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Computational Uniqueness. For every security parameter , input , and -query adversary ,


.

λ x 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏

Pr
y ≠ 𝖤𝗏𝖺𝗅 f(x)
∧ 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1

f ← 𝒪(λ)
(y, π) ← 𝖠𝖽𝗏 f(x)

≤ 𝗇𝖾𝗀𝗅(λ)

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳  queries𝗍 𝗍 ≪ 𝖳

Completeness. For every security parameter  and input , 


.

λ x

Pr [𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1
f ← 𝒪(λ)

(y, π) ← 𝖤𝗏𝖺𝗅 f(x)] = 1

Sequentiality. For every security parameter , input , and -round -query adversary ,


.

λ x 𝗉𝗈𝗅𝗒(𝗍) 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏

Pr [y = 𝖤𝗏𝖺𝗅 f(x)
f ← 𝒪(λ)

(y, π) ← 𝖠𝖽𝗏 f(x)] ≤ 𝗇𝖾𝗀𝗅(λ)

i.e. For every  and -query , there are at most -fraction of   
where  can find  and .

x 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏 𝗇𝖾𝗀𝗅(λ) f
𝖠𝖽𝗏 y′ ≠ 𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y′ ) = 1



How does previous adversary fail?
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Perfect uniqueness

f′ f′ 

fy

y′ 

Computationaly uniqueness

f′ 

f′ 

fy

y′ 

Disjoint: can learn new location Might intersect: cannot learn new location

 

   .


Otherwise, , 
contradicting perfect uniqueness.

y ≠ y′ 

⟹ q ∈ 𝖰𝖤𝗏𝖺𝗅( f′ , x) ∩ 𝖰𝖵𝖾𝗋𝗂𝖿𝗒( f, x, y)∖𝖰i
𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y′ ) = 𝖵𝖾𝗋𝗂𝖿𝗒 f′ (x, y′ ) = 1

 

   .


Since 
doesn’t contradict computational uniqueness.

y ≠ y′ 

⟹ q ∈ 𝖰𝖤𝗏𝖺𝗅( f′ , x) ∩ 𝖰𝖵𝖾𝗋𝗂𝖿𝗒( f, x, y)∖𝖰i
𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y′ ) = 𝖵𝖾𝗋𝗂𝖿𝗒 f′ (x, y′ ) = 1



Coupling with a uniqueness breaker [1/2]
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:

1. For :


a. Pick  consistent with current view of . 

b. Compute .

c. Let  be the query set of .

d. Query  with  in one round. 


2. Output .

𝖠𝖽𝗏f(x)
i ∈ [2𝗍 + 1]

f′ ∈ {0,1}* f
y′ := 𝖤𝗏𝖺𝗅 f′ (x)

𝖰𝖤𝗏𝖺𝗅( f′ , x) 𝖤𝗏𝖺𝗅 f′ (x)
f 𝖰𝖤𝗏𝖺𝗅( f′ , x)

𝖬𝖺𝗃𝗈𝗋𝗂𝗍𝗒(y1, …, y2t+1)

f

𝖰𝖤𝗏𝖺𝗅( f′ , x)

{0,1}*∖𝖰𝖤𝗏𝖺𝗅( f′ , x)

f′ 

𝖰𝖵𝖾𝗋𝗂𝖿𝗒( f, x, y)

Oracles that break uniqueness!

: set of all RO functions shuffled by positions in {0,1}* 𝖰𝖤𝗏𝖺𝗅( f′ , x)

An answer set for  𝖰𝖤𝗏𝖺𝗅( f′ , x)

An answer set for {0,1}*∖𝖰𝖤𝗏𝖺𝗅( f′ , x)



Coupling with a uniqueness breaker [2/2]
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:


1. Compute .

2. For :


a. Sample  that agrees with  on . 

b. Compute . If  and , output .

c. Sample  consistent with current view of  and query  with  in one round.

𝖠𝖽𝗏f
𝖴𝗇𝗂𝗊(x)

y := 𝖤𝗏𝖺𝗅 f(x)
i ∈ [3𝗍]

f′ ← {0,1}* f {0,1}*∖𝖰𝖤𝗏𝖺𝗅( f, x)
y′ := 𝖤𝗏𝖺𝗅 f′ (x) y′ ≠ y 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y′ ) = 1 y′ 

f′ ′ ← {0,1}* f f 𝖰𝖤𝗏𝖺𝗅( f′ ′ , x)

:

1. For :


a. Sample  consistent with current view of . 

b. Compute .

c. Let  be the query set of .

d. Query  with  in one round. 


2. Output .

𝖠𝖽𝗏f(x)
i ∈ [3𝗍]

f′ ← {0,1}* f
y′ := 𝖤𝗏𝖺𝗅 f′ (x)

𝖰𝖤𝗏𝖺𝗅( f′ , x) 𝖤𝗏𝖺𝗅 f′ (x)
f 𝖰𝖤𝗏𝖺𝗅( f′ , x)

𝖬𝖺𝗃𝗈𝗋𝗂𝗍𝗒(y1, …, y3t)

f′ 

𝖰𝖤𝗏𝖺𝗅( f, x)

{0,1}*∖𝖰𝖤𝗏𝖺𝗅( f, x)

f 𝖰𝖵𝖾𝗋𝗂𝖿𝗒( f′ , x, y)

f′ 

𝖰𝖵𝖾𝗋𝗂𝖿𝗒( f′ , x, y)

 succeeds!𝖠𝖽𝗏𝖴𝗇𝗂𝗊

 makes progress!𝖠𝖽𝗏



Improved lower bounds for 
perfect uniqueness and statistical uniqueness
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For every  and ,  
 accepts one and only one output .

f x
𝖵𝖾𝗋𝗂𝖿𝗒 f(x) y

For every ,  
there are at most -fraction of  where  

 accepts more than one output .

x
𝗇𝖾𝗀𝗅(λ) f

𝖵𝖾𝗋𝗂𝖿𝗒 f(x) y



Proof of work function (PoWF)

𝖲𝗈𝗅𝗏𝖾 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳  queries𝗍 𝗍 ≪ 𝖳
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Completeness. For every security parameter  and input , 


.

λ x

Pr [𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1
f ← 𝒪(λ)

(y, π) ← 𝖤𝗏𝖺𝗅 f(x)] = 1

Computational Uniqueness. For every security parameter , input , and -query adversary ,


.

λ x 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏

Pr
y ≠ 𝖤𝗏𝖺𝗅 f(x)
∧ 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1

f ← 𝒪(λ)
(y, π) ← 𝖠𝖽𝗏 f(x)

≤ 𝗇𝖾𝗀𝗅(λ)

Soundness. For every security parameter , input , and -query ( ) adversary ,


.

λ x 𝖳′ 𝖳′ < 𝖳 𝖠𝖽𝗏

Pr [∃π, 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1
f ← 𝒪(λ)

y ← 𝖠𝖽𝗏 f(x)] ≤ 𝗇𝖾𝗀𝗅(λ)

 can be parallel/sequential, 

we only count total query complexity.

𝖠𝖽𝗏



Statistically unique PoWF do not exist in the ROM 
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Theorem. Consider statistically unique  in the random oracle model (ROM). 

There exists a -query adversary  that breaks the soundness of .

𝖯𝗈𝖶𝖥 = (𝖲𝗈𝗅𝗏𝖾, 𝖵𝖾𝗋𝗂𝖿𝗒)
O(𝗍2) 𝖠𝖽𝗏 𝖯𝗈𝖶𝖥

Corollary. Consider statistically unique  in the random oracle model (ROM). 

There exists a -query adversary  that breaks the sequentiality of .

𝖵𝖣𝖥 = (𝖤𝗏𝖺𝗅, 𝖵𝖾𝗋𝗂𝖿𝗒)
O(𝗍2) 𝖠𝖽𝗏 𝖵𝖣𝖥

Main Theorem: ❌ Theorem: ❌

Main Theorem: ❌ Theorem: ❌

Main Theorem: ❌ Open Problem

Proof of sequential work [DLM19]: ✅ Proof of work [GKL15]: ✅

With Sequentiality Without Sequentiality

Perfect Uniqueness

Statistical Uniqueness

Computational Uniqueness

No Uniqueness

In the random oracle model



Proof sketch
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: set of all RO functions partitioned using {0,1}* 𝖵𝖾𝗋𝗂𝖿𝗒

f′ 

fy

y′ 

The rectangles are disjoint [BI87, AB09]:

- For every ,  s.t. .

- Otherwise, .

f ≠ f′ ∃q f(q) ≠ f′ (q)
𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y′ ) = 𝖵𝖾𝗋𝗂𝖿𝗒 f′ (x, y′ ) = 1

:

1. For :


a. Pick  consistent with current view of . 

b. Compute .

c. Query  with  in one round. 


2. Output , where  is the current view of .

𝖠𝖽𝗏f(x)
i ∈ [𝗍]

f′ ∈ {0,1}* f
y′ := 𝖲𝗈𝗅𝗏𝖾 f′ (x)

f 𝖰𝖵𝖾𝗋𝗂𝖿𝗒( f′ , x, y)
y := 𝖲𝗈𝗅𝗏𝖾 f ⋆

(x) f ⋆ f

 rounds of queries

At most  queries each round

𝗍
𝗍

 learns at least one query in 
 each iteration

𝖠𝖽𝗏
𝖰𝖵𝖾𝗋𝗂𝖿𝗒( f, x, y)

Generalization to statistical uniqueness: approximate version of [BI87, AB09]. 
We extend [KSS11] to suit the context of VDF/PoWF.



Thank you! 
https://eprint.iacr.org/2024/766
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