
Breaking Verifiable Delay Functions
in the Random Oracle Model
Ziyi Guan, Artur Riazanov, Weiqiang Yuan

￼1

Random oracle model

2

Random oracle

For every , is the uniform distribution over all functions .

𝒪 := {𝒪ℓ}ℓ∈ℕ
ℓ ∈ ℕ 𝒪ℓ f : {0,1}* → {0,1}ℓ

fAlgorithm 𝖠

Query q ∈ {0,1}*

f(q)

Verifiable Delay Function (VDF)

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳 queries𝗍 𝗍 ≪ 𝖳

Completeness. For every security parameter and input ,

.

λ x

Pr [𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1
f ← 𝒪(λ)

(y, π) ← 𝖤𝗏𝖺𝗅 f(x)] = 1

Computational Uniqueness. For every security parameter , input , and -query adversary ,

.

λ x 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏

Pr
y ≠ 𝖤𝗏𝖺𝗅 f(x)
∧ 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1

f ← 𝒪(λ)
(y, π) ← 𝖠𝖽𝗏 f(x)

≤ 𝗇𝖾𝗀𝗅(λ)

3

Sequentiality. For every security parameter , input , and -round -query adversary ,

.

λ x 𝗉𝗈𝗅𝗒(𝗍) 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏

Pr [y = 𝖤𝗏𝖺𝗅 f(x)
f ← 𝒪(λ)

(y, π) ← 𝖠𝖽𝗏 f(x)] ≤ 𝗇𝖾𝗀𝗅(λ)

Why study VDF?

4

Randomness beacon An ideal service that regularly publish randomness

that no one can predict/manipulate

Previous approach:

- Apply a randomness extractor to stock prices;

- Issue: stock prices can be manipulated to bias the output randomness.

Using VDF: because of the delay (sequentiality), adversaries cannot quickly compute output randomness to
decide how to manipulate the sources (stock prices).

Blockchain: leader election Select the participant that determines the next block

- Unpredictability (sequentiality): adversaries do not know the next leader until shortly before the announcement.

- Uniqueness: exactly one leader is chosen each time.

Our result

5

Main Theorem. Consider in the random oracle model (ROM).

There exists a -round -query adversary that breaks the sequentiality of .

𝖵𝖣𝖥 = (𝖤𝗏𝖺𝗅, 𝖵𝖾𝗋𝗂𝖿𝗒)
O(𝗍) O(𝗍 ⋅ 𝖳) 𝖠𝖽𝗏 𝖵𝖣𝖥

Verifiable delay functions do not exist in the random oracle model!
No black-box constructions of VDFs from OWF, OWP, CRHF, etc.

Cryptography is necessary for VDF constructions!

No adversary can find
alternative solutions.

No query-bounded adversary
can find alternative solutions

with non-negl. probability.

Perfect Completeness Imperfect Completeness

Perfect
Uniqueness

Computational
Uniqueness

[MSW20]: ❌ ROM

Main Theorem: ❌ ROM Main Theorem: ❌ ROM

[DGMV20]: ❌ tight VDFs in ROM

[RSS20]: ❌ cyclic groups of known orders

[EFKP20]: ✅ ROM + repeated squaring

Main Theorem: ❌ ROM

Main Theorem: ❌ ROM

Warm-up: perfect uniqueness

6

Recap: perfectly unique VDFs in the ROM

7

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳 queries𝗍 𝗊 ≪ 𝖰

Perfect Uniqueness. For every security parameter , input , and unbounded adversary ,

.

λ x 𝖠𝖽𝗏

Pr
y ≠ 𝖤𝗏𝖺𝗅 f(x)
∧ 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1

f ← 𝒪(λ)
(y, π) ← 𝖠𝖽𝗏 f(x)

= 0

Completeness. For every security parameter and input ,

.

λ x

Pr [𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1
f ← 𝒪(λ)

(y, π) ← 𝖤𝗏𝖺𝗅 f(x)] = 1

Sequentiality. For every security parameter , input , and -round -query adversary ,

.

λ x 𝗉𝗈𝗅𝗒(𝗍) 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏

Pr [y = 𝖤𝗏𝖺𝗅 f(x)
f ← 𝒪(λ)

(y, π) ← 𝖠𝖽𝗏 f(x)] ≤ 𝗇𝖾𝗀𝗅(λ)

i.e. For every and , accepts one and only one output .f x 𝖵𝖾𝗋𝗂𝖿𝗒 f(x) y

Brief detour: decision tree algorithms

8

Random oracle

For every , is the uniform distribution over all functions .

𝒪 := {𝒪ℓ}ℓ∈ℕ
ℓ ∈ ℕ 𝒪ℓ f : {0,1}* → {0,1}ℓ

fAlgorithm 𝖠

Query q ∈ {0,1}*

f(q)

𝖠(x)
First RO query

All possible answers
Second RO query

⋮

Accepting leavesRejecting leaves

Set of all RO functions

Unique y f

 partitions random oracles𝖵𝖾𝗋𝗂𝖿𝗒(x, ⋅)

9

𝖵𝖾𝗋𝗂𝖿𝗒(x, y1)

Every RO function in this rectangle satisfies . f 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y) = 1

All functions consistent with leaf
Leaf: a partial function with at most locations fixed.𝗍

𝖵𝖾𝗋𝗂𝖿𝗒(x, y2) 𝖵𝖾𝗋𝗂𝖿𝗒(x, y3)

Adversary that breaks sequentiality

10

: set of all RO functions partitioned using {0,1}* 𝖵𝖾𝗋𝗂𝖿𝗒

f′￼

:

1. For :

2. Output .

𝖠𝖽𝗏f(x)
i ∈ [2𝗍 + 1]

𝖬𝖺𝗃𝗈𝗋𝗂𝗍𝗒(y1, …, y2𝗍+1)

f

 rounds of queries

At most queries each round

2𝗍 + 1
𝖳

a. Pick consistent with current view of .

b. Compute .

c. Let be the query set of .

d. Query with in one round.

f′￼ ∈ {0,1}* f
y′￼ := 𝖤𝗏𝖺𝗅 f′￼(x)

𝖰𝖤𝗏𝖺𝗅(f′￼, x) 𝖤𝗏𝖺𝗅 f′￼(x)
f 𝖰𝖤𝗏𝖺𝗅(f′￼, x)

y

y′￼

- queries at least one new position .

• Otherwise, , contradicting perfect uniqueness.

- At most iterations have .

y ≠ y′￼⟹ 𝖠𝖽𝗏 q ∈ 𝖰𝖵𝖾𝗋𝗂𝖿𝗒(f, x, y)∖𝖰i
𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y′￼) = 𝖵𝖾𝗋𝗂𝖿𝗒 f′￼(x, y′￼) = 1

|𝖰𝖵𝖾𝗋𝗂𝖿𝗒(f, x, y) | ≤ 𝗍 ⟹ 𝗍 y′￼ ≠ y

View of at the beginning of iter. f i

Answer to is q 0
Answer to is q 1

Computational uniqueness

11

Recap: computationally unique VDFs in the ROM

12

Computational Uniqueness. For every security parameter , input , and -query adversary ,

.

λ x 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏

Pr
y ≠ 𝖤𝗏𝖺𝗅 f(x)
∧ 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1

f ← 𝒪(λ)
(y, π) ← 𝖠𝖽𝗏 f(x)

≤ 𝗇𝖾𝗀𝗅(λ)

𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳 queries𝗍 𝗍 ≪ 𝖳

Completeness. For every security parameter and input ,

.

λ x

Pr [𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1
f ← 𝒪(λ)

(y, π) ← 𝖤𝗏𝖺𝗅 f(x)] = 1

Sequentiality. For every security parameter , input , and -round -query adversary ,

.

λ x 𝗉𝗈𝗅𝗒(𝗍) 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏

Pr [y = 𝖤𝗏𝖺𝗅 f(x)
f ← 𝒪(λ)

(y, π) ← 𝖠𝖽𝗏 f(x)] ≤ 𝗇𝖾𝗀𝗅(λ)

i.e. For every and -query , there are at most -fraction of
where can find and .

x 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏 𝗇𝖾𝗀𝗅(λ) f
𝖠𝖽𝗏 y′￼ ≠ 𝖤𝗏𝖺𝗅 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y′￼) = 1

How does previous adversary fail?

13

Perfect uniqueness

f′￼f′￼

fy

y′￼

Computationaly uniqueness

f′￼

f′￼

fy

y′￼

Disjoint: can learn new location Might intersect: cannot learn new location

 .

Otherwise, ,
contradicting perfect uniqueness.

y ≠ y′￼

⟹ q ∈ 𝖰𝖤𝗏𝖺𝗅(f′￼, x) ∩ 𝖰𝖵𝖾𝗋𝗂𝖿𝗒(f, x, y)∖𝖰i
𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y′￼) = 𝖵𝖾𝗋𝗂𝖿𝗒 f′￼(x, y′￼) = 1

 .

Since
doesn’t contradict computational uniqueness.

y ≠ y′￼

⟹ q ∈ 𝖰𝖤𝗏𝖺𝗅(f′￼, x) ∩ 𝖰𝖵𝖾𝗋𝗂𝖿𝗒(f, x, y)∖𝖰i
𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y′￼) = 𝖵𝖾𝗋𝗂𝖿𝗒 f′￼(x, y′￼) = 1

Coupling with a uniqueness breaker [1/2]

14

:

1. For :

a. Pick consistent with current view of .

b. Compute .

c. Let be the query set of .

d. Query with in one round.

2. Output .

𝖠𝖽𝗏f(x)
i ∈ [2𝗍 + 1]

f′￼ ∈ {0,1}* f
y′￼ := 𝖤𝗏𝖺𝗅 f′￼(x)

𝖰𝖤𝗏𝖺𝗅(f′￼, x) 𝖤𝗏𝖺𝗅 f′￼(x)
f 𝖰𝖤𝗏𝖺𝗅(f′￼, x)

𝖬𝖺𝗃𝗈𝗋𝗂𝗍𝗒(y1, …, y2t+1)

f

𝖰𝖤𝗏𝖺𝗅(f′￼, x)

{0,1}*∖𝖰𝖤𝗏𝖺𝗅(f′￼, x)

f′￼

𝖰𝖵𝖾𝗋𝗂𝖿𝗒(f, x, y)

Oracles that break uniqueness!

: set of all RO functions shuffled by positions in {0,1}* 𝖰𝖤𝗏𝖺𝗅(f′￼, x)

An answer set for 𝖰𝖤𝗏𝖺𝗅(f′￼, x)

An answer set for {0,1}*∖𝖰𝖤𝗏𝖺𝗅(f′￼, x)

Coupling with a uniqueness breaker [2/2]

15

:

1. Compute .

2. For :

a. Sample that agrees with on .

b. Compute . If and , output .

c. Sample consistent with current view of and query with in one round.

𝖠𝖽𝗏f
𝖴𝗇𝗂𝗊(x)

y := 𝖤𝗏𝖺𝗅 f(x)
i ∈ [3𝗍]

f′￼ ← {0,1}* f {0,1}*∖𝖰𝖤𝗏𝖺𝗅(f, x)
y′￼ := 𝖤𝗏𝖺𝗅 f′￼(x) y′￼ ≠ y 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y′￼) = 1 y′￼

f′￼′￼ ← {0,1}* f f 𝖰𝖤𝗏𝖺𝗅(f′￼′￼, x)

:

1. For :

a. Sample consistent with current view of .

b. Compute .

c. Let be the query set of .

d. Query with in one round.

2. Output .

𝖠𝖽𝗏f(x)
i ∈ [3𝗍]

f′￼ ← {0,1}* f
y′￼ := 𝖤𝗏𝖺𝗅 f′￼(x)

𝖰𝖤𝗏𝖺𝗅(f′￼, x) 𝖤𝗏𝖺𝗅 f′￼(x)
f 𝖰𝖤𝗏𝖺𝗅(f′￼, x)

𝖬𝖺𝗃𝗈𝗋𝗂𝗍𝗒(y1, …, y3t)

f′￼

𝖰𝖤𝗏𝖺𝗅(f, x)

{0,1}*∖𝖰𝖤𝗏𝖺𝗅(f, x)

f 𝖰𝖵𝖾𝗋𝗂𝖿𝗒(f′￼, x, y)

f′￼

𝖰𝖵𝖾𝗋𝗂𝖿𝗒(f′￼, x, y)

 succeeds!𝖠𝖽𝗏𝖴𝗇𝗂𝗊

 makes progress!𝖠𝖽𝗏

Improved lower bounds for
perfect uniqueness and statistical uniqueness

16

For every and ,
 accepts one and only one output .

f x
𝖵𝖾𝗋𝗂𝖿𝗒 f(x) y

For every ,
there are at most -fraction of where

 accepts more than one output .

x
𝗇𝖾𝗀𝗅(λ) f

𝖵𝖾𝗋𝗂𝖿𝗒 f(x) y

Proof of work function (PoWF)

𝖲𝗈𝗅𝗏𝖾 f(x) 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π)
(y, π)

 queries𝖳 queries𝗍 𝗍 ≪ 𝖳

17

Completeness. For every security parameter and input ,

.

λ x

Pr [𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1
f ← 𝒪(λ)

(y, π) ← 𝖤𝗏𝖺𝗅 f(x)] = 1

Computational Uniqueness. For every security parameter , input , and -query adversary ,

.

λ x 𝗉𝗈𝗅𝗒(𝖳) 𝖠𝖽𝗏

Pr
y ≠ 𝖤𝗏𝖺𝗅 f(x)
∧ 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1

f ← 𝒪(λ)
(y, π) ← 𝖠𝖽𝗏 f(x)

≤ 𝗇𝖾𝗀𝗅(λ)

Soundness. For every security parameter , input , and -query () adversary ,

.

λ x 𝖳′￼ 𝖳′￼ < 𝖳 𝖠𝖽𝗏

Pr [∃π, 𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y, π) = 1
f ← 𝒪(λ)

y ← 𝖠𝖽𝗏 f(x)] ≤ 𝗇𝖾𝗀𝗅(λ)

 can be parallel/sequential,

we only count total query complexity.

𝖠𝖽𝗏

Statistically unique PoWF do not exist in the ROM

18

Theorem. Consider statistically unique in the random oracle model (ROM).

There exists a -query adversary that breaks the soundness of .

𝖯𝗈𝖶𝖥 = (𝖲𝗈𝗅𝗏𝖾, 𝖵𝖾𝗋𝗂𝖿𝗒)
O(𝗍2) 𝖠𝖽𝗏 𝖯𝗈𝖶𝖥

Corollary. Consider statistically unique in the random oracle model (ROM).

There exists a -query adversary that breaks the sequentiality of .

𝖵𝖣𝖥 = (𝖤𝗏𝖺𝗅, 𝖵𝖾𝗋𝗂𝖿𝗒)
O(𝗍2) 𝖠𝖽𝗏 𝖵𝖣𝖥

Main Theorem: ❌ Theorem: ❌

Main Theorem: ❌ Theorem: ❌

Main Theorem: ❌ Open Problem

Proof of sequential work [DLM19]: ✅ Proof of work [GKL15]: ✅

With Sequentiality Without Sequentiality

Perfect Uniqueness

Statistical Uniqueness

Computational Uniqueness

No Uniqueness

In the random oracle model

Proof sketch

19

: set of all RO functions partitioned using {0,1}* 𝖵𝖾𝗋𝗂𝖿𝗒

f′￼

fy

y′￼

The rectangles are disjoint [BI87, AB09]:

- For every , s.t. .

- Otherwise, .

f ≠ f′￼ ∃q f(q) ≠ f′￼(q)
𝖵𝖾𝗋𝗂𝖿𝗒 f(x, y′￼) = 𝖵𝖾𝗋𝗂𝖿𝗒 f′￼(x, y′￼) = 1

:

1. For :

a. Pick consistent with current view of .

b. Compute .

c. Query with in one round.

2. Output , where is the current view of .

𝖠𝖽𝗏f(x)
i ∈ [𝗍]

f′￼ ∈ {0,1}* f
y′￼ := 𝖲𝗈𝗅𝗏𝖾 f′￼(x)

f 𝖰𝖵𝖾𝗋𝗂𝖿𝗒(f′￼, x, y)
y := 𝖲𝗈𝗅𝗏𝖾 f ⋆

(x) f ⋆ f

 rounds of queries

At most queries each round

𝗍
𝗍

 learns at least one query in
 each iteration

𝖠𝖽𝗏
𝖰𝖵𝖾𝗋𝗂𝖿𝗒(f, x, y)

Generalization to statistical uniqueness: approximate version of [BI87, AB09].
We extend [KSS11] to suit the context of VDF/PoWF.

Thank you!
https://eprint.iacr.org/2024/766

20

https://eprint.iacr.org/2024/766

