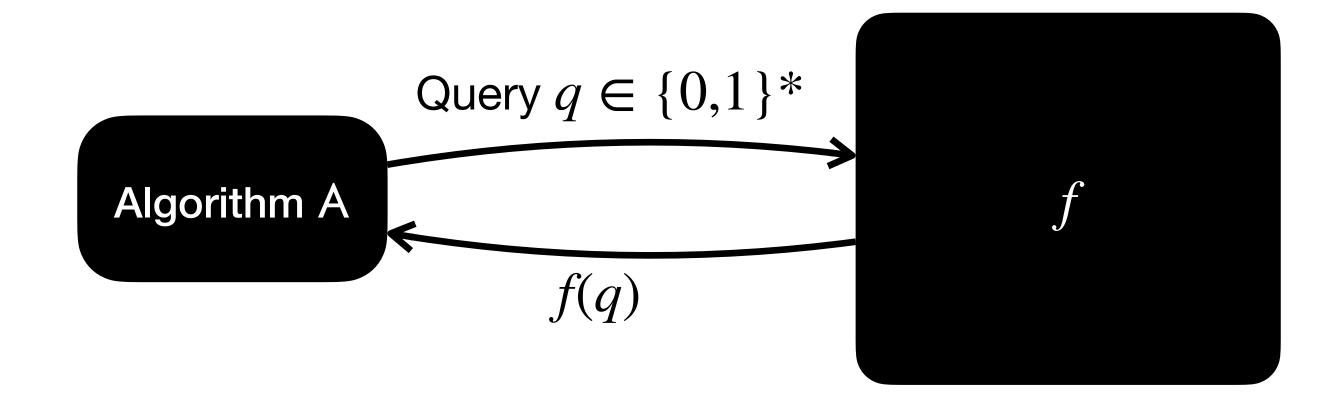
## **Breaking Verifiable Delay Functions** in the Random Oracle Model Ziyi Guan, Artur Riazanov, Weiqiang Yuan

### **Random oracle model**

### Random oracle $\mathcal{O} := \{\mathcal{O}_{\ell}\}_{\ell \in \mathbb{N}}$





### For every $\ell \in \mathbb{N}$ , $\mathcal{O}_{\ell}$ is the uniform distribution over all functions $f: \{0,1\}^* \to \{0,1\}^{\ell}$ .

Verifiable Delay FunctionT queriest queries
$$t \ll 1^{f}(x)$$
 $(y, \pi)$  $exal^{f}(x)$  $Verify^{f}(x, y, \pi)$ 

**Completeness.** For every security parameter  $\lambda$  and input *x*,  $\Pr\left[\mathsf{Verify}^f(x, y, \pi) = 1\right]$ 

Sequentiality. For every security parameter  $\lambda$ , input x, and poly(t)-round poly(T)-query adversary Adv,

**Computational Uniqueness.** For every security parameter  $\lambda$ , input x, and poly(T)-query adversary Adv,  $\begin{vmatrix} f \leftarrow \mathcal{O}(\lambda) \\ (y, \pi) \leftarrow \mathsf{Adv}^f(x) \end{vmatrix} \le \mathsf{negl}(\lambda).$ 

Pr 
$$\begin{cases} y \neq \text{Eval}^{f}(x) \\ \wedge \text{Verify}^{f}(x, y, \pi) = 1 \end{cases}$$

# ction (VDF)

$$\begin{cases} f \leftarrow \mathcal{O}(\lambda) \\ (y, \pi) \leftarrow \mathsf{Eval}^f(x) \end{cases} = 1.$$

 $\Pr\left[y = \mathsf{Eval}^{f}(x) \middle| \begin{array}{c} f \leftarrow \mathcal{O}(\lambda) \\ (y, \pi) \leftarrow \mathsf{Adv}^{f}(x) \end{array} \right] \leq \mathsf{negl}(\lambda).$ 

## Why study VDF?

Randomness beacon

An ideal service that regularly publish randomness that no one can predict/manipulate

Previous approach:

- Apply a randomness extractor to stock prices;
- Issue: stock prices can be manipulated to bias the output randomness.

Using VDF: because of the delay (sequentiality), adversaries cannot quickly compute output randomness to decide how to manipulate the sources (stock prices).

#### **Blockchain: leader election**

- Uniqueness: exactly one leader is chosen each time.

#### Select the participant that determines the next block

- Unpredictability (sequentiality): adversaries do not know the next leader until shortly before the announcement.

### Our result

Verifiable delay functions do not exist in the random oracle model! No black-box constructions of VDFs from OWF, OWP, CRHF, etc. Cryptography is necessary for VDF constructions!

**Main Theorem.** Consider VDF = (Eval, Verify) in the random oracle model (ROM). There exists a O(t)-round  $O(t \cdot T)$ -query adversary Adv that breaks the sequentiality of VDF.

No adversary can find alternative solutions.

No query-bounded adversary can find alternative solutions with non-negl. probability.

|                             | Perfect Completeness                                                                                                                | Imperfect Completeness |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Perfect<br>Uniqueness       | [MSW20]: 🗙 ROM<br>Main Theorem: 🗙 ROM                                                                                               | Main Theorem: 🗙 ROM    |
| Computational<br>Uniqueness | [DGMV20]: X tight VDFs in ROM<br>[RSS20]: X cyclic groups of known orders<br>[EFKP20]: ROM + repeated squaring<br>Main Theorem: ROM | Main Theorem: 🗙 ROM    |

## Warm-up: perfect uniqueness

### **Recap: perfectly unique VDFs in the ROM** t queries $q \ll Q$ T queries

**Completeness.** For every security parameter  $\lambda$  and input  $\Pr\left[\mathsf{Verify}^f(x, y, \pi) = 1\right]$ Sequentiality. For every security parameter  $\lambda$ , input x, and poly(t)-round poly(T)-query adversary Adv,  $\Pr\left| y = \mathsf{Eval}^{f}(x) \right| \quad (y, \pi)$ **Perfect Uniqueness.** For every security parameter  $\lambda$ , input x, and unbounded adversary Adv,

$$\Pr \begin{bmatrix} y \neq \mathsf{Eval}^{f}(x) & f \leftarrow \mathcal{O}(\lambda) \\ \wedge \mathsf{Verify}^{f}(x, y, \pi) = 1 & (y, \pi) \leftarrow \mathsf{Adv}^{f}(x) \end{bmatrix} = 0.$$



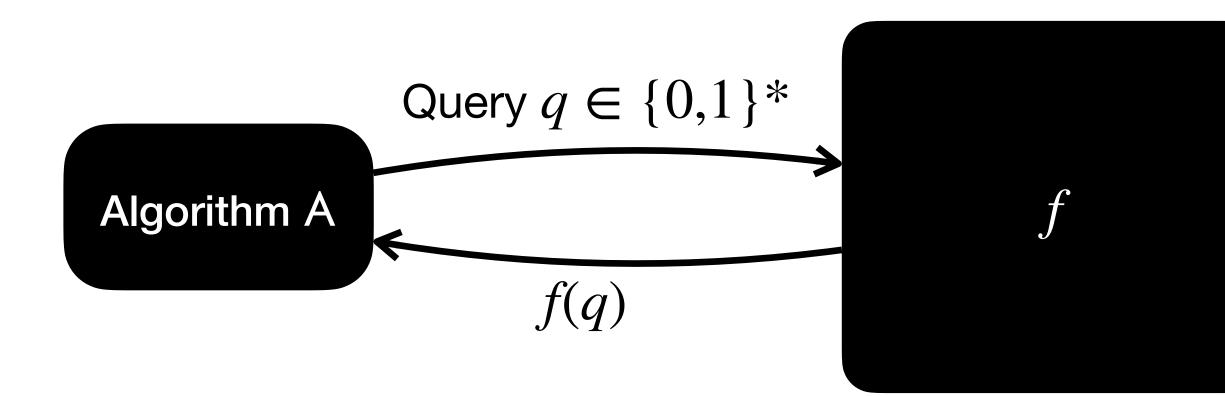
$$\begin{aligned} f \leftarrow \mathcal{O}(\lambda) \\ (y, \pi) \leftarrow \mathsf{Eval}^f(x) \end{aligned} = 1.$$

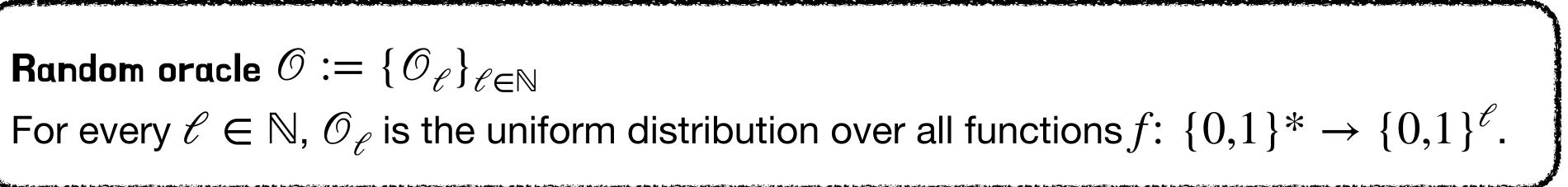
$$\left. \begin{array}{c} f \leftarrow \mathcal{O}(\lambda) \\ \pi) \leftarrow \mathsf{Adv}^f(x) \end{array} \right| \le \mathsf{negl}(\lambda).$$

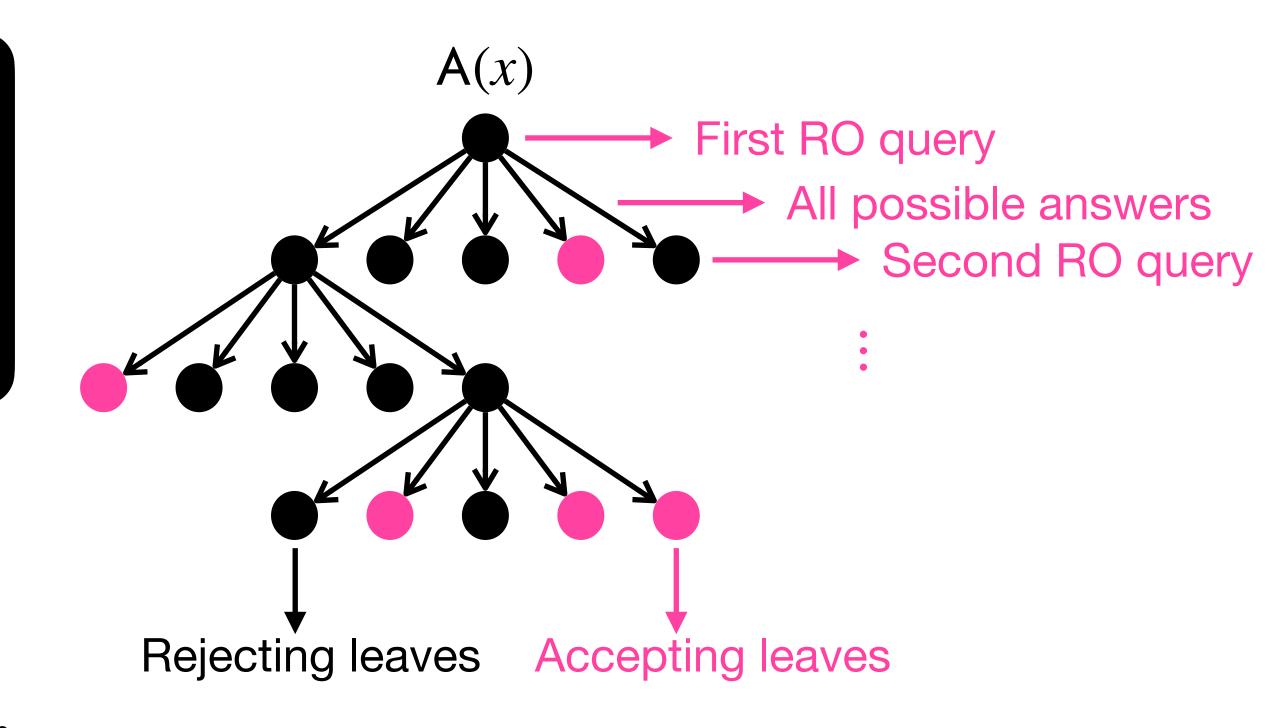
i.e. For every f and x, Verify f(x) accepts one and only one output y.

## **Brief detour: decision tree algorithms**

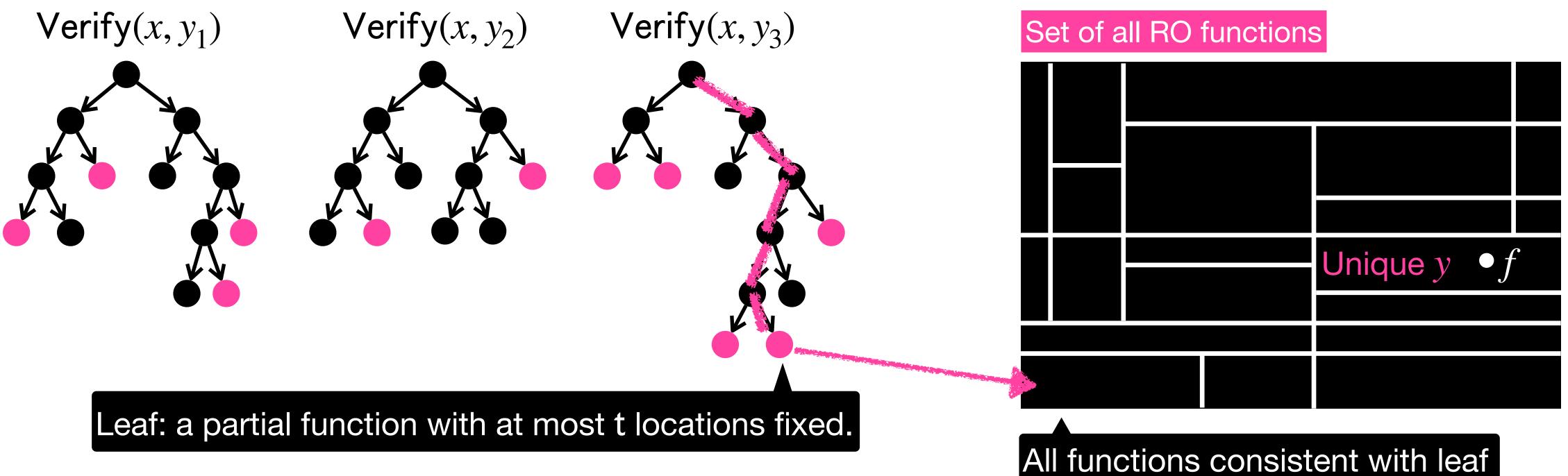
## Random oracle $\mathcal{O} := \{\mathcal{O}_{\ell}\}_{\ell \in \mathbb{N}}$







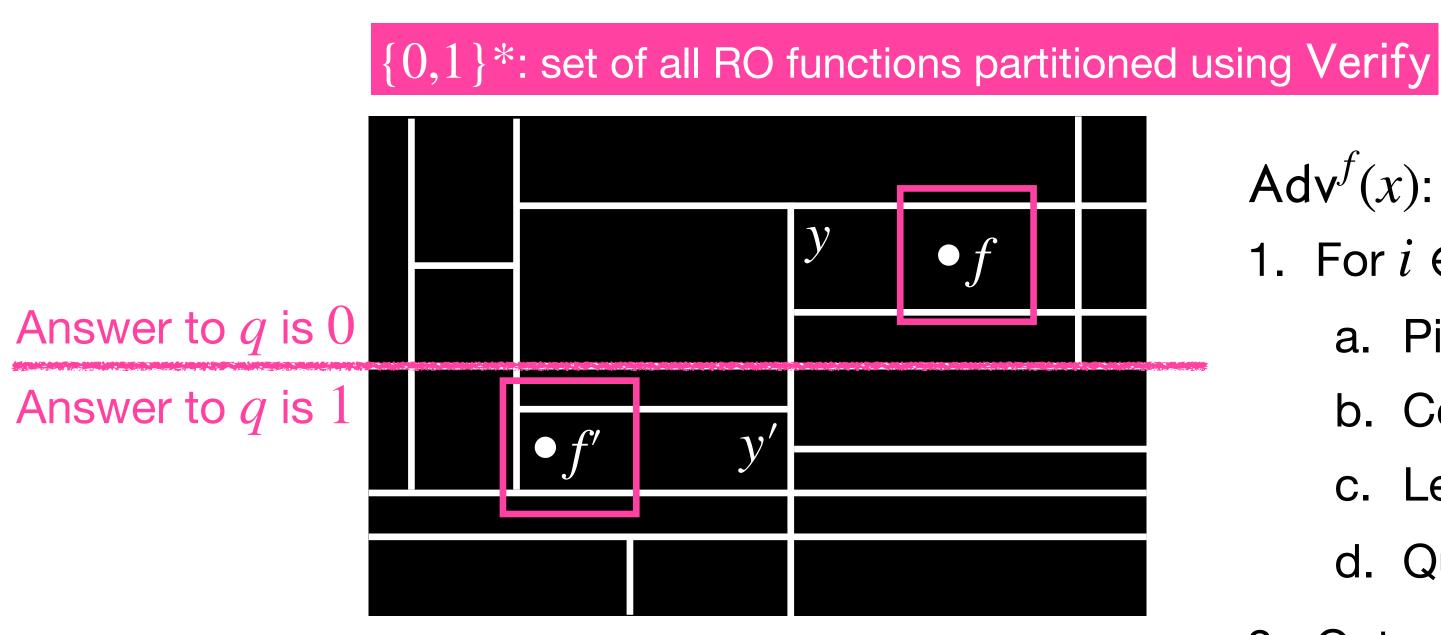
## Verify $(x, \cdot)$ partitions random oracles



Every RO function f in this rectangle satisfies  $Verify^{f}(x, y) = 1$ .



## Adversary that breaks sequentiality



- $y \neq y' \Longrightarrow Adv$  queries at least one new position  $q \in Q_{Verify}(f, x, y) \setminus Q_i$ .
- $|Q_{Verifv}(f, x, y)| \le t \implies At most t iterations have y' \neq y.$

2t + 1 rounds of queries  $Adv^{f}(x)$ : At most T queries each round 1. For  $i \in [2t + 1]$ : a. Pick  $f' \in \{0,1\}^*$  consistent with current view of f. b. Compute  $y' := Eval^{f'}(x)$ . c. Let  $Q_{Eval}(f', x)$  be the query set of  $Eval^{f'}(x)$ . d. Query f with  $Q_{Fval}(f', x)$  in one round. 2. Output Majority $(y_1, ..., y_{2t+1})$ .

View of f at the beginning of iter. i• Otherwise,  $Verify^{f}(x, y') = Verify^{f'}(x, y') = 1$ , contradicting perfect uniqueness.







## **Computational uniqueness**

Recap: computationallyT queriest queriest queriest < 1
$$(y, \pi)$$
 $Verify^f(x, y, \pi)$ 

**Completeness.** For every security parameter  $\lambda$  and inputing  $\Pr\left[\operatorname{Verify}^{f}(x, y, \pi) = 1\right]$ **Sequentiality.** For every security parameter  $\lambda$ , input x,  $\Pr\left[y = \operatorname{Eval}^{f}(x)\right]_{(y, x)}$ 

Computational Uniqueness. For every security parame

Pr 
$$\begin{vmatrix} y \neq \text{Eval}^f(x) \\ \wedge \text{Verify}^f(x, y, \pi) = 1 \end{vmatrix}$$

i.e. For every x and poly(T)-query Adv, there are at most negl( $\lambda$ )-fraction of f where Adv can find  $y' \neq \text{Eval}^{f}(x)$  and  $\text{Verify}^{f}(x, y') = 1$ .

## y unique VDFs in the ROM

but 
$$x$$
,  

$$1 \begin{vmatrix} f \leftarrow \mathcal{O}(\lambda) \\ (y, \pi) \leftarrow \text{Eval}^{f}(x) \end{vmatrix} = 1.$$
and poly(t)-round poly(T)-query adversary Adv,  

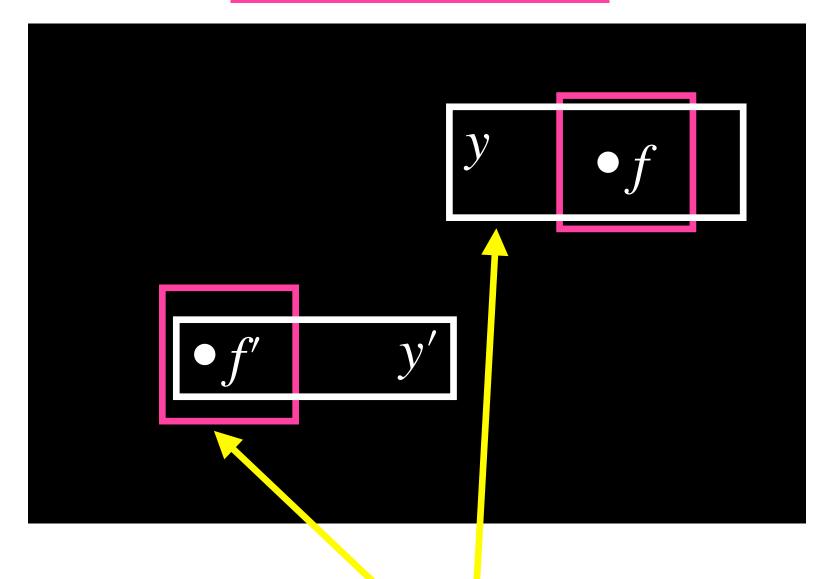
$$f \leftarrow \mathcal{O}(\lambda) \\ (x, \pi) \leftarrow \text{Adv}^{f}(x) \end{vmatrix} \leq \text{negl}(\lambda).$$
ever  $\lambda$ , input  $x$ , and poly(T)-query adversary Adv,  

$$\begin{vmatrix} f \leftarrow \mathcal{O}(\lambda) \\ (y, \pi) \leftarrow \text{Adv}^{f}(x) \end{vmatrix} \leq \text{negl}(\lambda).$$



## How does previous adversary fail?

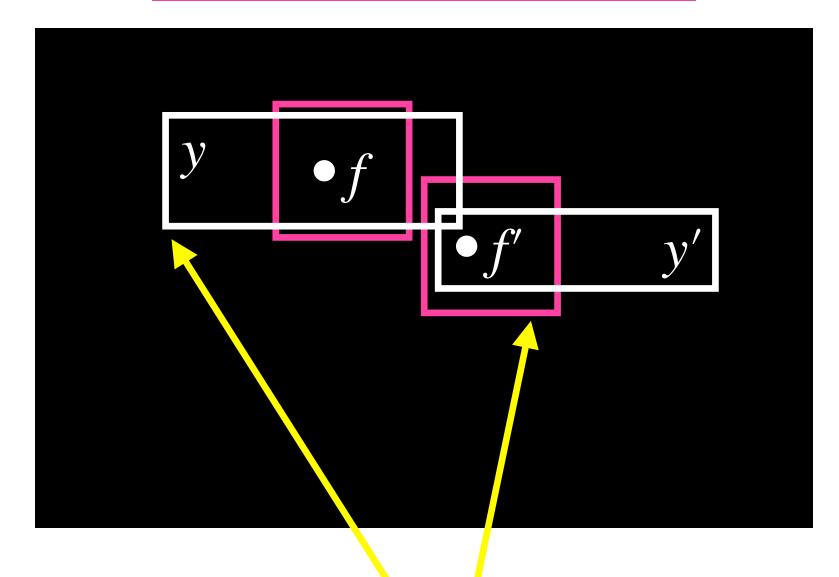
Perfect uniqueness



Disjoint: can learn new location

 $y \neq y'$   $\implies q \in Q_{\text{Eval}}(f', x) \cap Q_{\text{Verify}}(f, x, y) \setminus Q_i.$ Otherwise,  $\text{Verify}^f(x, y') = \text{Verify}^{f'}(x, y') = 1$ , contradicting perfect uniqueness.

### Computationaly uniqueness



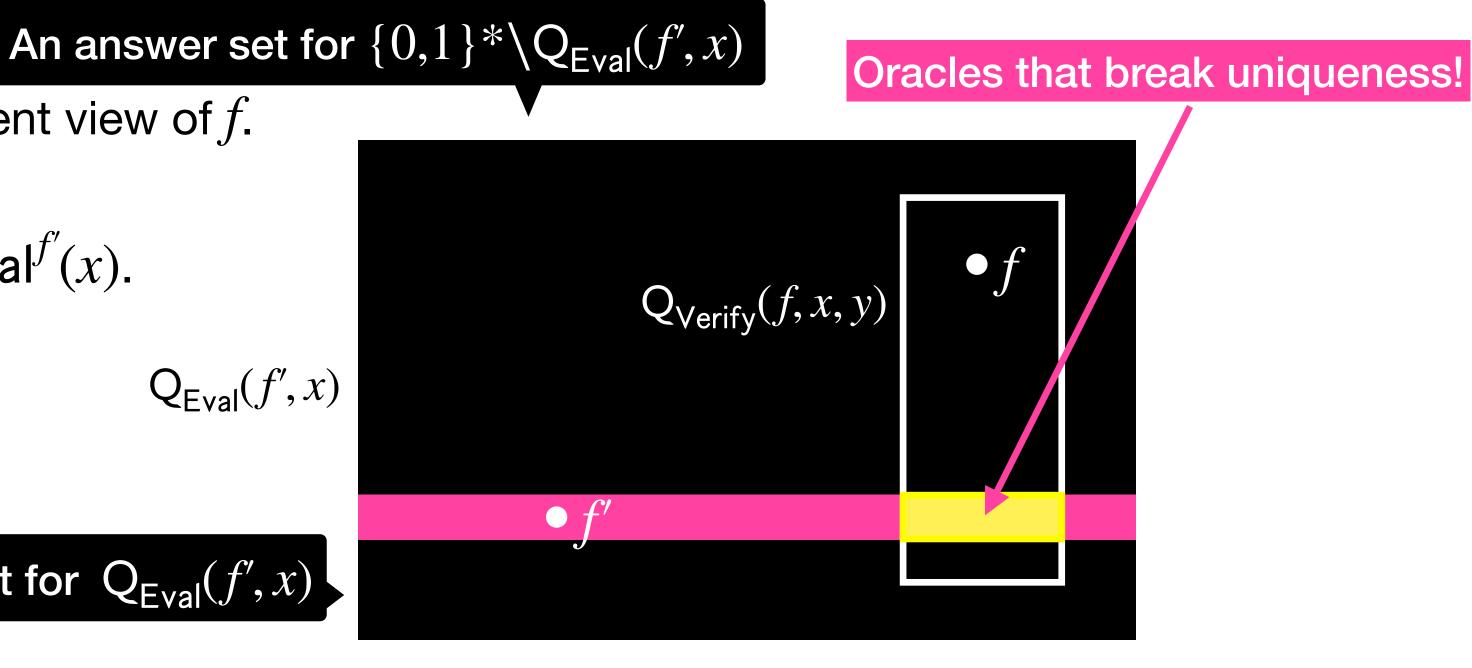
Might intersect: cannot learn new location

 $y \neq y'$   $\Rightarrow q \in Q_{\text{Eval}}(f', x) \cap Q_{\text{Verify}}(f, x, y) \setminus Q_i$ . Since  $\text{Verify}^f(x, y') = \text{Verify}^{f'}(x, y') = 1$ doesn't contradict computational uniqueness.

## **Coupling with a uniqueness breaker [1/2]**

### $Adv^{f}(x)$ : 1. For $i \in [2t + 1]$ : a. Pick $f' \in \{0,1\}^*$ consistent with current view of f. b. Compute $y' := Eval^{f'}(x)$ . c. Let $Q_{Fval}(f', x)$ be the query set of $Eval^{f'}(x)$ . d. Query f with $Q_{Eval}(f', x)$ in one round. 2. Output Majority $(y_1, ..., y_{2t+1})$ .

An answer set for  $Q_{Eval}(f', x)$ 



```
\{0,1\}^* \setminus Q_{\mathsf{Eval}}(f',x)
```

 $\{0,1\}^*$ : set of all RO functions shuffled by positions in  $Q_{Fval}(f', x)$ 



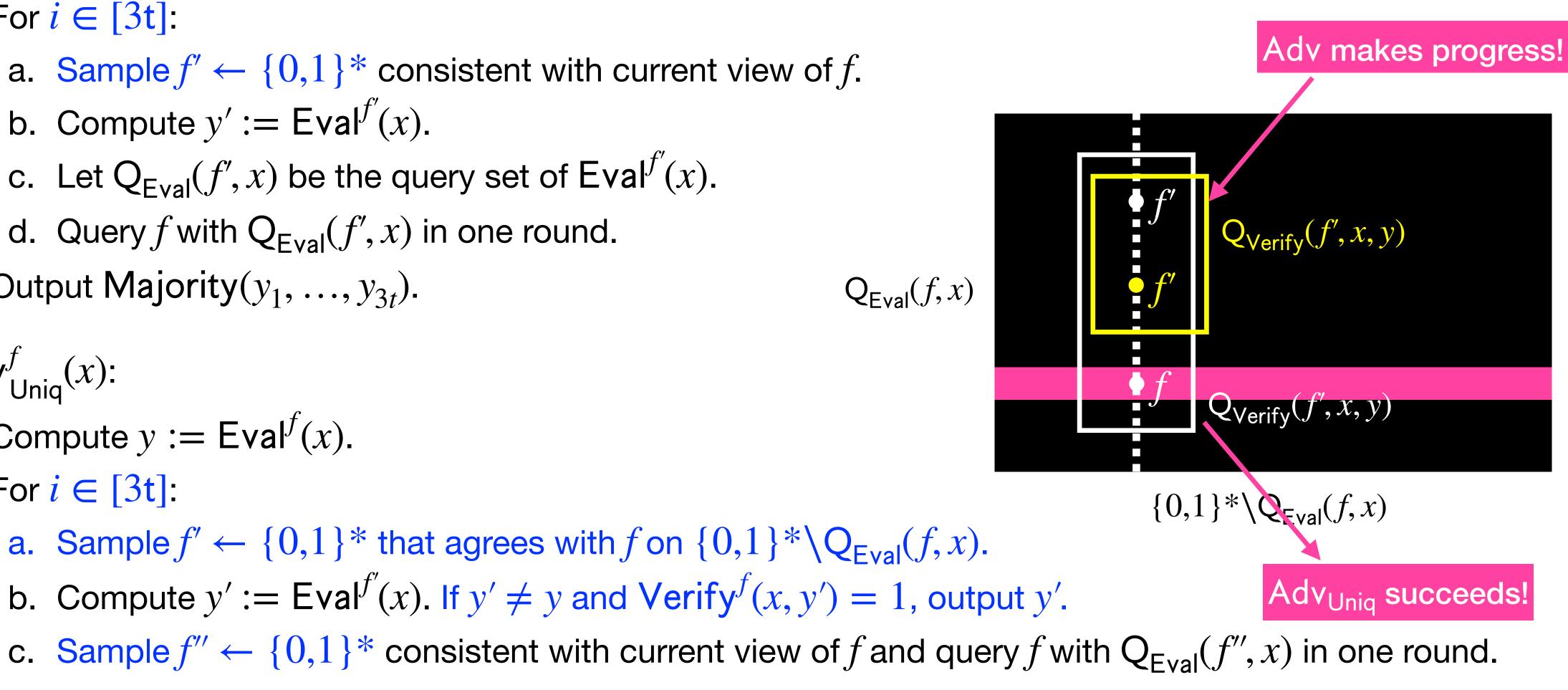
## Coupling with a uniqueness breaker [2/2]

### $Adv^{f}(x)$ :

- 1. For  $i \in [3t]$ :
  - a. Sample  $f' \leftarrow \{0,1\}^*$  consistent with current view of f.
  - b. Compute  $y' := \mathsf{Eval}^{f'}(x)$ .
  - c. Let  $Q_{Fval}(f', x)$  be the query set of  $Eval^{f'}(x)$ .
  - d. Query f with  $Q_{Fval}(f', x)$  in one round.
- 2. Output Majority $(y_1, ..., y_{3t})$ .

 $\operatorname{Adv}_{\operatorname{Uniq}}^{f}(x)$ :

- 1. Compute  $y := Eval^{f}(x)$ .
- 2. For  $i \in [3t]$ :
  - a. Sample  $f' \leftarrow \{0,1\}^*$  that agrees with f on  $\{0,1\}^* \setminus Q_{Eval}(f,x)$ .
  - b. Compute  $y' := \text{Eval}^{f'}(x)$ . If  $y' \neq y$  and  $\text{Verify}^f(x, y') = 1$ , output y'.



# Improved lower bounds for perfect uniqueness and statistical uniqueness

For every f and x, Verify f(x) accepts one and only one output y.

For every *x*, there are at most negl( $\lambda$ )-fraction of *f* where Verify<sup>*f*</sup>(*x*) accepts more than one output *y*.

## **Proof of work function (PoWF)**

t queries  $t \ll T$ T queries Solve<sup>f</sup>(x)  $(y, \pi)$  Verify<sup>f</sup>(x, y,  $\pi$ )

**Completeness.** For every security parameter  $\lambda$  and input x,  $\Pr\left[\mathsf{Verify}^f(x, y, \pi) = 1\right]$ 

**Soundness**. For every security parameter  $\lambda$ , input x, and T'-query (T' < T) adversary Adv,

**Computational Uniqueness.** For every security parameter  $\lambda$ , input x, and poly(T)-query adversary Adv,

Pr 
$$y \neq \text{Eval}^{f}(x)$$
  
  $\wedge \text{Verify}^{f}(x, y, \pi) = 1$ 



$$\begin{cases} f \leftarrow \mathcal{O}(\lambda) \\ (y, \pi) \leftarrow \mathsf{Eval}^f(x) \end{cases} = 1.$$

Adv can be parallel/sequential, we only count total query complexity.

 $\Pr\left[\exists \pi, \operatorname{Verify}^{f}(x, y, \pi) = 1 \middle| \begin{array}{c} f \leftarrow \mathcal{O}(\lambda) \\ y \leftarrow \operatorname{Adv}^{f}(x) \end{array} \right] \leq \operatorname{negl}(\lambda).$ 

$$\left. \begin{array}{c} f \leftarrow \mathcal{O}(\lambda) \\ (y, \pi) \leftarrow \mathsf{Adv}^f(x) \end{array} \right| \leq \mathsf{negl}(\lambda).$$



## Statistically unique PoWF do not exist in the ROM

**Theorem.** Consider statistically unique PoWF = (Solve, Verify) in the random oracle model (ROM). There exists a  $O(t^2)$ -query adversary Adv that breaks the soundness of PoWF.

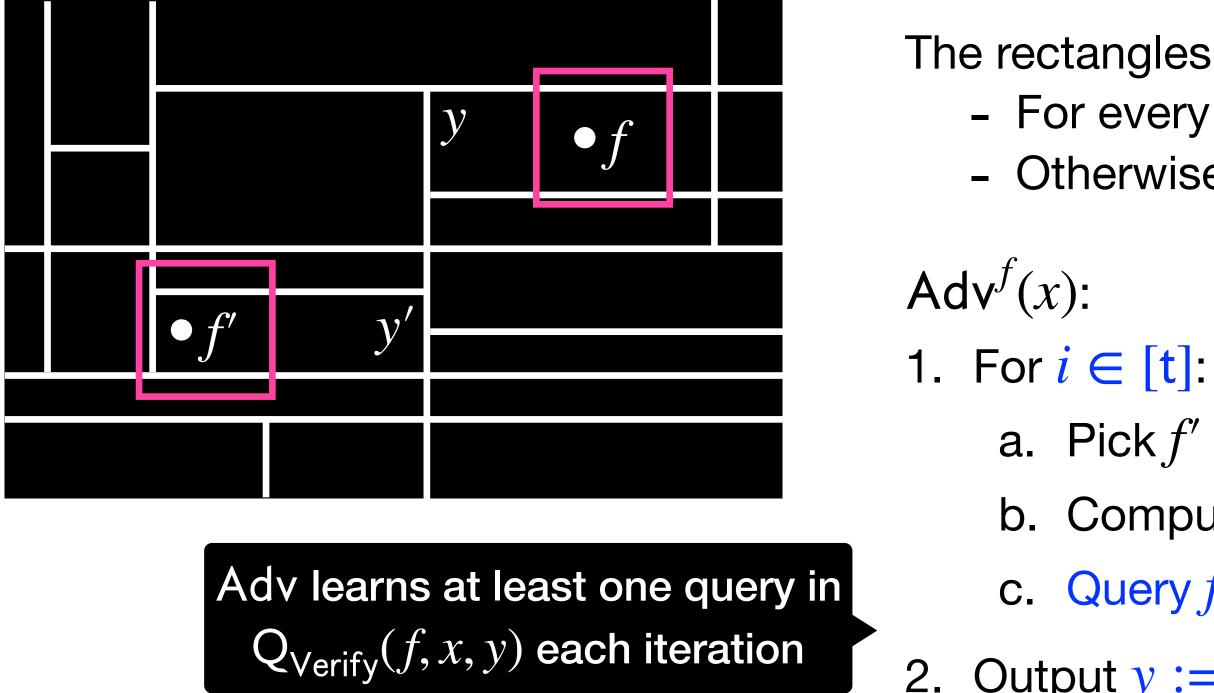
There exists a  $O(t^2)$ -query adversary Adv that breaks the sequentiality of VDF.

|                                                  | cle model                       |                                     |                          |
|--------------------------------------------------|---------------------------------|-------------------------------------|--------------------------|
| In the random oracle model<br>Perfect Uniqueness |                                 | With Sequentiality                  | Without Sequentiality    |
| In the                                           | Perfect Uniqueness              | Main Theorem: 🗙                     | Theorem: 🗙               |
|                                                  | Statistical Uniqueness          | Main Theorem: 🗙                     | Theorem: 🗙               |
|                                                  | <b>Computational Uniqueness</b> | Main Theorem: 🗙                     | Open Problem             |
|                                                  | No Uniqueness                   | Proof of sequential work [DLM19]: 🔽 | Proof of work [GKL15]: 🔽 |

**Corollary.** Consider statistically unique VDF = (Eval, Verify) in the random oracle model (ROM).

## Proof sketch

{0,1}\*: set of all RO functions partitioned using Verify



Generalization to statistical uniqueness: approximate version of [BI87, AB09]. We extend [KSS11] to suit the context of VDF/PoWF.

The rectangles are disjoint [BI87, AB09]: - For every  $f \neq f'$ ,  $\exists q \text{ s.t. } f(q) \neq f'(q)$ . - Otherwise,  $\operatorname{Verify}^f(x, y') = \operatorname{Verify}^{f'}(x, y') = 1$ .

f(x): For *i* ∈ [t]: a. Pick  $f' \in \{0,1\}^*$  consistent with current view of *f*. b. Compute  $y' := \text{Solve}^{f'}(x)$ . c. Query *f* with Q<sub>Verify</sub>(*f'*, *x*, *y*) in one round.

2. Output  $y := \text{Solve}^{f^{\star}}(x)$ , where  $f^{\star}$  is the current view of f.

## Thank you! https://eprint.iacr.org/2024/766