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What is proof-carrying data (PCD)?

- Recursive compositions of SNARKs.

- It’s useful for efficiently verifying distributed computations.  

Problem:

- PCD is deployed under the assumption "security of PCD" = "security of underlying SNARK".

- BUT existing security analyses show a huge gap in security ("PCD is far less secure than underlying SNARK").

This work:

- We propose an idealized PCD that models hash-based PCD in practice.

- We prove that this idealized PCD is as secure as its underlying SNARK.
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What is proof-carrying data (PCD)? [1/2]

x1 x2 x3 x4

E.g. A simple distributed computation: summing six numbers

x5 x6

x1 x2 x3 x4 x5 x6

x2 x3 x2 x3x1 x4 x5 x6

Π1 Π2 Π3 Π4 Π5 Π6

x2 + x3

Π2,3

x1 + x2 + x3

Π1,2,3

x4 + x5 + x6

Π4,5,6

x1 + x2 + x3 + x4 + x5 + x6

Π1,2,3,4,5,6

Proof-carrying data (PCD)

- Enables mutually distrustful parties to perform a distributed computation 
- The correctness of each step can be verified efficiently 
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What is proof-carrying data (PCD)? [2/2]
Proof-carrying data (PCD)

- Enables mutually distrustful parties to perform a distributed computation 
- The correctness of each step can be verified efficiently 

w3,1 w3,2 w3,3 w3,4

PCD transcript  for a distributed computation

with size  and depth 

T
𝖭 = 8 𝖣 = 3

z2,3

w1

z2,1 z2,2 Π2,2

Π2,3

Π2,1
w2,1 w2,2 w2,3

z3,2 Π3,2
z3,1 Π3,1

z3,3

Π3,3
z3,4 Π3,4

Output: z1 Correctness of transcript  is determined by compliance predicate  

- Node  is correct if .

-  is -compliant if all nodes are correct.


The proof string  attests that:

- node  is correct, AND

- each child vertex of node  has a valid proof string.

T ϕ
(2,3) ϕ(z2,3, w2,3, (z3,3, z3,4)) = 1

T ϕ

Π2,3
(2,3)

(2,3)

ℙ
(z2,3, w2,3)

((z3,3, Π3,3), (z3,4, Π3,4)) Π2,3
𝕍

z2,3

b ∈ {0,1}

PCD prover  and PCD verifier ℙ 𝕍
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Security guarantee of PCD

Perfect completeness:  can convince  of correct computations.

Knowledge soundness:  bounded ,  an efficient extractor  such that


.

ℙ 𝕍
∀ ℙ̃ ∃ 𝔼ℙ̃

Pr [𝕍(zout, Πout) = 1
∧ T is not ϕ-compliant

(ϕ, zout, Πout) ← ℙ̃
T ← 𝔼ℙ̃] ≤ κ(λ, 𝖣, 𝖭)

: security parameter

T: computation transcript


: maximum transcript depth

: maximum transcript size

λ

D
𝖭

(zi, Πi)i
ℙ

(zout, wout) 𝕍
zout

b ∈ {0,1}Πout

b = 1
𝕍zoutℙ̃

Πout

ϕ

Output: zout

𝔼ℙ̃

Not -compliantϕ



Review: SNARK
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PCD can be constructed from a SNARK (e.g., for CSAT).
𝖢𝖲𝖠𝖳 := {((C, x), w) : C(x, w) = 1}

𝖠𝖱𝖦 = (P𝖠𝖱𝖦, V𝖠𝖱𝖦)

P𝖠𝖱𝖦 V𝖠𝖱𝖦

((C, x), w)

π

(C, x)

b ∈ {0,1}
very small|π |

• Perfect completeness:  convinces  if .

• Knowledge soundness:  bounded ,  an efficient extractor  such that


.

P𝖠𝖱𝖦 V𝖠𝖱𝖦 C(x, w) = 1
∀ P̃𝖠𝖱𝖦 ∃ EP̃𝖠𝖱𝖦

Pr
((C, x), w) ∉ 𝖢𝖲𝖠𝖳
∧ V𝖠𝖱𝖦(C, x, π) = 1

(C, x, π) ← P̃𝖠𝖱𝖦
w ← EP̃𝖠𝖱𝖦

≤ κ𝖠𝖱𝖦(λ)

b = 1V𝖠𝖱𝖦P̃𝖠𝖱𝖦 (C, x, π)EP̃𝖠𝖱𝖦
w

((C, x), w) ∉ 𝖢𝖲𝖠𝖳



ℙ
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Naive approach: concatenate SNARK proofs

P𝖠𝖱𝖦

SNARK prover for compliance predicate ϕ

(z2,3, w2,3, (z3,3, z3,4)) π2,3

(z2,3, w2,3)

Π2,3 := π2,3 ∥ Π3,3 ∥ Π3,4

Issue:  is NOT succinct (linear in number of vertices)Π2,3

((z3,3, Π3,3), (z3,4, Π3,4))



𝕍
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Working idea: Recursively compose the SNARK proofs

𝖢
bϕ ∈ {0,1}

Recursive circuit 

((𝖢, z), (w, (zi, Πi)i))

V𝖠𝖱𝖦

ϕ(z, w, (zi)i)

(𝖢, zi, Πi) bV𝖠𝖱𝖦
∈ {0,1}

b := bϕ ∧ bV𝖠𝖱𝖦

ℙ(𝖢, z, w)
(zi, Πi)i

((𝖢, z), (w, (zi, Πi)i)) Π

(𝖢, z)

b

Π

V𝖠𝖱𝖦(𝖢, z, Π)
b

PCD formalizes the recursive proof composition of a SNARK:

- PCD prover and verifier invoke SNARK prover and verifier (for ) for the recursive circuit .𝖢𝖲𝖠𝖳 𝖢

P𝖠𝖱𝖦

𝖢
V𝖠𝖱𝖦
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ℙ̃

EP̃1

P̃2

𝔼0 T0 = ∅

𝔼1

T1

𝔼2

EP̃2

T2P̃3

Size of extractor

•  

• 


•   

  is polynomial only when  is constant.

| P̃i | = |𝔼i−1 | + O(mi) ⟹ |EP̃i
| = tE( | P̃i | )

|𝔼i | ≤ |EP̃i
| + O(mi)

tE : n ↦ nc ⟹ |𝔼ℙ̃ | = O ( | ℙ̃ |c𝖣 )
⟹ |𝔼ℙ̃ | 𝖣

𝔼ℙ̃ = 𝔼𝖣

Canonical security analysis of PCD

w1

w2,1 w2,2 w2,3

Output: z1

z2,1

Π2,1

z2,2 Π2,2
z2,3

Π2,3

T2 T1

(ϕ, z1, Π1) (z1, Π1)

w1

((z2,i, Π2,i))i∈[3]

(w2,i)i∈[3]

Non-black-box knowledge soundness is problematic: 

size of extractor grows too quickly.

Finding a better analysis remains a MAJOR open problem in this area.

P̃1

Today: focus on PCD based on SNARKs with "strong" extraction.



Our result
Theorem.

SNARK for 𝖢𝖲𝖠𝖳 PCD
No security when  is larger than constant.𝖣

SNARK for  
with straightline extraction

𝖢𝖲𝖠𝖳 PCD with straightline extraction
Recursive proof composition

κ(λ, 𝗊, 𝖣, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

Prior works
Recursive proof composition
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In practice, SNARKs have non-black-box knowledge soundness. 
Straightline extraction only exists in idealized models.  

How can we apply our theorem in practice then? 

κ(λ, 𝗊, 𝖣, 𝖭) ≤ exp(𝖣) ⋅ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

We prove a significantly improved security bound for PCD based on SNARKs with straightline extraction:



Applications

Application 2. 

- [CT10]: SNARK with straightline extraction in the SROM (signed random oracle model).


- Their bound: .


- Our bound: .

κ(λ, 𝗊, 𝖣, 𝖭) ≤ 𝖭 ⋅ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

κ(λ, 𝗊, 𝖣, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)
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Application 3. 

- [CCGOS23]: SNARK with straightline extraction in the AROM (arithmetized random oracle model).


- Their bound: .


- Our bound: .

κ(λ, 𝗊, 𝖣, 𝖭) ≤ 𝖭 ⋅ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

κ(λ, 𝗊, 𝖣, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

Application 1 [main]. 

- We propose a new idealization of hash-based PCD used in practice as a “PCD” in the ROM.


- We apply our theorem: .


- First justification for current choice of parameters of hash-based PCD in practice! [Polygon, Sharp]

κ(λ, 𝗊, 𝖣, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭) = κ𝖠𝖱𝖦(λ, 𝗊)



Recursive proof composition 
with straightline extraction 
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SNARKs with straightline extraction
SNARKs in an oracle model (e.g. ROM):

P V

((C, x), w)

π

(C, x)

b ∈ {0,1}
very small|π |

f f

Straightline knowledge soundness:  a deterministic extractor  such that  bounded adversary ,


.

∃ E ∀ P̃

Pr
((C, x), w) ∉ 𝖢𝖲𝖠𝖳
∧ Vf(C, x, π) = 1

f ← U(λ)

(C, x, π) tr P̃f

w ← E(C, x, π, tr)
≤ κ𝖠𝖱𝖦(λ, 𝗊)

: security parameter

: adversary query bound

λ
𝗊

b = 1VP̃ (C, x, π)(C, x, π, tr)Ew
((C, x), w) ∉ 𝖢𝖲𝖠𝖳

Wonderful Fact: in the ROM (and other interesting oracle models) there are SNARKs of interest with straightline extraction! 

(E.g., the Micali SNARK and BCS SNARK and related constructions.)
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𝖢f

bϕ ∈ {0,1}

Recursive circuit 

((𝖢, z), (w, (zi, Πi)i))

Vf
𝖠𝖱𝖦

ϕ f(z, w, (zi)i)

(𝖢, zi, Πi) bV𝖠𝖱𝖦
∈ {0,1}

b := bϕ ∧ bV𝖠𝖱𝖦

𝕍 fℙf
(𝖢, z, w)

(zi, Πi)i

(𝖢, (z, w, (zi, Πi)i)) Π

(𝖢, z)

b

Π

Vf
𝖠𝖱𝖦(𝖢, z, Π)

b
Pf

𝖠𝖱𝖦

𝖢f

Vf
𝖠𝖱𝖦

Can’t we use the previous recursive composition?

ISSUE!  has oracle access to . 
 and  need to prove computations involving oracle .

𝖢 f
P𝖠𝖱𝖦 V𝖠𝖱𝖦 f
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𝖢𝖲𝖠𝖳f := {((C, x), w) : Cf(x, w) = 1}

We need SNARK in the oracle model that can prove/verify for oracle relations 
- Relativized SNARK!

Relativized SNARKs in an oracle model

: security parameter

: maximum transcript size

: adversary query bound

λ
𝖭
𝗊

b = 1
𝕍zoutℙ̃

Πout

ϕ

Output: zout

𝔼 (ϕ, zout,Πout
, tr)

Not -compliantϕ

PCD straightline knowledge soundness:  a deterministic extractor  such that  bounded adversary ,


.

∃ 𝔼 ∀ P̃

Pr 𝕍 f(zout, Π) = 1
∧ T is not ϕ-compatible

f ← U(λ)

(ϕ, zout, Πout)
tr ℙ̃f

T ← 𝔼(ϕ, zout, Πout, tr)
≤ κ(λ, 𝗊, 𝖭)

Relativized SNARK for 𝖢𝖲𝖠𝖳f PCD with straightline extraction
Recursive proof composition



Concrete security of PCD 
with straightline extraction 

16



17

v2,1 v2,2 v2,3

z2,1

Π2,1

z2,2 Π2,2
z2,3

Π2,3

v3,1 v3,2 v3,3 v3,4

z3,2 Π3,2
z3,1 Π3,1

z3,4

Π3,3
z3,4 Π3,4

Construction of the PCD extractor

𝔼(ϕ, z, Π, 𝗍𝗋) T

v1

v0

z Π

v1Extraction queue Q

E𝖠𝖱𝖦(𝖢, z, Π, 𝗍𝗋) wv1

Parse  as wv1
(w1, (z2,i, Π(v2,i,v1))i∈[3])

v2,1Extraction queue Q v2,2 ⋯ v2,m

E𝖠𝖱𝖦(𝒞, z2,1, Π2,1, 𝗍𝗋) wv2,1

In general, PCD extractor is constructed by repeatedly invoking SNARK extractor.
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Security analysis in previous works
A natural analysis gives us this bound: 


• Each recursion pays the knowledge soundness error of the argument.


• The -th extraction: invoking  for a corresponding argument prover .

κ(λ, 𝗊, 𝖭) ≤ 𝖭 ⋅ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

i E𝖠𝖱𝖦 P̃i

Warning: the actual construction of  is more 
complicated. This is for intuitive explanation only. 

P̃i

P̃f
1

ℙ̃f (ϕ, z, Π)
(z, Π)

P̃f
i

P̃f
i−1 (ϕ, z, Π)

tr

E𝖠𝖱𝖦(𝒞, z, π, tr) (w, (zk, Πk)k)

(zvi
, Πvi

)
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Our security analysis [1/2]
 not -compliant


 There is one vertex in  that is not -compliant


Find such vertex in one pass and output it


.

T ϕ

⟹ T ϕ

⟹ κ(λ, 𝗊, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

𝔼(ϕ, z, Π, 𝗍𝗋)

v2,1 v2,2 v2,3

z2,1

Π2,1

z2,2 Π2,2
z2,3

Π2,3

v3,1 v3,2 v3,3 v3,4

z3,2 Π3,2
z3,1 Π3,1

z3,4

Π3,3
z3,4 Π3,4

v1

v0

z Π

T

v2,1
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Our security analysis [2/2]
ℙ̃f (ϕ, z, Π) P̃f z⋆, Π⋆

v1Extraction queue Q

E𝖠𝖱𝖦(𝒞, z, Π, 𝗍𝗋) wv1

Parse  as wv1
(w1, (z2,i, Π(v2,i,v1))i∈[3])

v2,1Extraction queue Q v2,2 ⋯ v2,m

E𝖠𝖱𝖦(𝒞, z2,1, Π2,1, 𝗍𝗋) wv2,1

 or 

 such that ?

ϕ f(z1, w1, (z2,i)i∈[3]) ≠ 1
∃i ∈ [3] Vf(z2,i, Π(v2,i,v1)) ≠ 1

Parse  as wv2,1
(w1, (z3,1, Π(v3,1,v2,1))  or 


?
ϕ f(z2,1, w2,1, (z3,1)) ≠ 1
Vf(z3,1, Π(v3,1,v2,1)) ≠ 1

v2,1 v2,2 v2,3

z2,1

Π2,1

z2,2 Π2,2
z2,3

Π2,3

v1

v0

z Π

v3,1

z3,1 Π3,1







Yet 

(z⋆, Π⋆) := (z2,1, Π2,1)

𝖢 ((𝖢, z⋆), (w2,1, (z3,1, Π3,1))) ≠ 1

Vf(𝖢, z⋆, Π⋆) = 1

𝒞f

bϕ ∈ {0,1}

Recursive circuit 

((𝖢, z), (w, (zi, Πi)i))

Vf
𝖠𝖱𝖦

ϕ f(z, w, (zi)i)

(𝖢, zi, Πi) bV𝖠𝖱𝖦
∈ {0,1}

b := bϕ ∧ bV𝖠𝖱𝖦

Our theorem: κ(λ, 𝗊, 𝖣, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)



Application: 
Set security for hash-based PCD
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Warm-up: analyzing hash-based SNARKs
Three-step recipe: 

Step 1. Model the hash function as "ideal": a random function.


- the hash-based SNARK is idealized as a SNARK in the random oracle model (ROM-SNARK).


Step 2. Establish concrete security bounds for the ROM-SNARK.

Step 3. Set security parameters of the hash-based SNARK accordingly. 

Random Oracle ModelStandard Model

Hash-based SNARK  
for 𝖢𝖲𝖠𝖳

ROM-SNARK 
for 𝖢𝖲𝖠𝖳

Idealize

Careful!! Idealization is applicable only for black-box use of the hash function.

Fortunately, applicable for the hash-based SNARKs we care about (e.g. Micali SNARK).
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First attempt for idealization of hash-based PCD
PCDs are deployed based on various approaches. A popular approach is hash-based PCD. 

Hash-based SNARK  
for 𝖢𝖲𝖠𝖳

Hash-based 
PCD Expensive security analysis 

(extractor blows up)

Can our new analysis justify the above practice?

Relativized SNARK for  
with straightline extraction

𝖢𝖲𝖠𝖳f
PCD with straightline extraction

Recursive proof composition

Our theorem: κ(λ, 𝗊, 𝖣, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

ROM-SNARK 
for 𝖢𝖲𝖠𝖳

Recursive proof composition Idealize

Standard Model Random Oracle Model

Nevertheless, practitioners use hash-based PCD 
as if it's as secure as the hash-based SNARK. (!!)
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Our theorem: κ(λ, 𝗊, 𝖣, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

Hash-based PCD PCD in the ROMIdealize Relativized SNARK in the ROM 
with straightline extraction

Recursive proof composition

What we hope to do

Hash-based PCD PCD in the ROMIdealize Relativized SNARK in the ROM 
with straightline extraction

Recursive proof composition

Reality
Not believed to exist! [CL20]

Can’t apply ☹Our theorem: κ(λ, 𝗊, 𝖣, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

Second attempt for idealization of hash-based PCD

Not believed to exist! [Val08, HN23]

Idealization is applicable only for black-box use of the hash function - not true in general. 
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NON-SUCCINCT  
PCD in the ROM 

with straightline extraction

Idealize NON-SUCCINCT  
relativized NARK in the ROM 
with straightline extraction

Our idealization for hash-based PCD

Recursive proof compositionHash-based PCD

Forwarding the queries makes 
the proof non-succinct

Issue: Hash-based PCD uses hash function in a non-black-box way.

Observation 1: PCD looks at hash function to check the correctness, it doesn’t “destroy” the hash function.

Observation 2:   is an oracle circuit because  make oracle queries.

Solution: Forward all the queries of  by asking  to attach ’s “query-answer trace” in the proof.

𝖢 V𝖠𝖱𝖦
𝖢 P𝖠𝖱𝖦 𝖢

ℙf

Pf
𝖠𝖱𝖦

𝖢f

Vf
𝖠𝖱𝖦

Our theorem: κ(λ, 𝗊, 𝖣, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭) = κ𝖠𝖱𝖦(λ, 𝗊)
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Last step: relativized ROM-NARK
Idea: Given an oracle circuit, remove its oracle gate by attaching its “query-answer trace” to instance.

𝖢x
f

w b ∈ {0,1}
𝖢′￼(x, 𝗍𝗋)

w b ∈ {0,1}

( ⋅ ) 𝗍𝗋 𝖢f(x, w)

P2 V2
(π, tr)


Construct 

( ⋅ ) tr 𝖢f(x, w)

𝖢′￼

π ← P1(𝖢′￼, (x, tr), w)

Construct 

Check:

- 


-  correct

𝖢

Vf
1(𝖢′￼, (x, tr), π)

tr

: relativized NARK in the ROM for 𝖠𝖱𝖦2 = (P2, V2) 𝖢𝖲𝖠𝖳f

: 
SNARK in the ROM 

for 


𝖠𝖱𝖦1 = (P1, V1)

𝖢𝖲𝖠𝖳



TL;DR
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What is proof-carrying data (PCD)?

- Recursive compositions of SNARKs.

- It’s useful for efficiently verifying distributed computations.  

Problem:

- PCD is deployed under the assumption "security of PCD" = "security of underlying SNARK".

- BUT existing security analyses show a huge gap in security ("PCD is far less secure than underlying SNARK").

This work:

- We propose an idealized PCD that models hash-based PCD in practice.

- We prove that this idealized PCD is as secure as its underlying SNARK.
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Thank you!


https://eprint.iacr.org/2023/1646

https://eprint.iacr.org/2023/1646


Technical extension: 
Probabilistic straightline 
extraction
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Probabilistic straightline extraction
Probabilistic straightline knowledge soundness for SNARKs: 


 a probabilistic extractor  such that  bounded adversary ,


.

∃ E ∀ P̃

Pr ((C, x), w) ∉ 𝖢𝖲𝖠𝖳f

∧ Vf(C, x, π) = 1

f ← U(λ)

(C, x, π) tr P̃f

w ← E(C, x, π, tr)
≤ κ𝖠𝖱𝖦(λ, 𝗊)

: security parameter

: adversary query bound

λ
𝗊

: security parameter

: maximum transcript size

: adversary query bound

λ
𝖭
𝗊

PCD probabilistic straightline knowledge soundness:  a probabilistic extractor  such that  bounded adversary ,


.

∃ 𝔼 ∀ P̃

Pr 𝕍 f(zout, Π) = 1
∧ T is not ϕ-compatible

f ← U(λ)

(ϕ, zout, Πout)
tr ℙ̃f

T ← 𝔼(ϕ, zout, Πout, tr)
≤ κ(λ, 𝗊, 𝖭)

Relativized SNARK for  
with probabilistic straightline extraction

𝖢𝖲𝖠𝖳f PCD  
with probabilistic straightline extraction

Recursive proof composition
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Our security analysis
Theorem. We prove an improved security bound even for PCD based on SNARKs with probabilistic straightline extraction:

SNARK for  
with probabilistic straightline extraction

𝖢𝖲𝖠𝖳 PCD  
with probabilistic straightline extraction

Recursive proof composition

κ(λ, 𝗊, 𝖣, 𝖭) ≤ 𝖭 ⋅ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

The multiplicative factor  is tight: 

- With probabilistic straightline extraction, at each node,  pays for both the extraction error and the randomness error of .

- If let  be the randomness error of , it’s possible to show:


.

𝖭
𝔼 E𝖠𝖱𝖦

ϵ E𝖠𝖱𝖦
κ(λ, 𝗊, 𝖣, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭) + 𝖭 ⋅ ϵ



Application: 
Improved concrete security for black-box 
PCD constructions
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PCD in the SROM
• Signed random oracle model (SROM):


- On input , samples a random answer , generates a signature  on , and outputs . 


- Repeated inputs have the same answer. 


• [CT10]: SNARK in the ROM  SNARK in the SROM (preserves straightline extraction)


- The argument verifier doesn’t need to query the oracle: verify  is enough. 


- [CT10] gives a bound .


- Our analysis improves it to .

x y σ (x, y) (y, σ)

→
σ

κ(λ, 𝗊, 𝖭) ≤ 𝖭 ⋅ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

κ(λ, 𝗊, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)
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PCD in the AROM
• Arithmetized random oracle model (AROM):


- A random oracle: idealization of a concrete hash function ;


- An arithmetization oracle: idealization of a low degree polynomial that encodes the circuit of .


• [CCGOS22]: SNARK in the ROM  SNARK in the AROM (preserves straightline extraction) 


- Queries in the AROM can be accumulated. 


- [CCGOS22] gives a bound .


- Our analysis improves it to .

h
h

→

κ(λ, 𝗊, 𝖭) ≤ 𝖭 ⋅ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)

κ(λ, 𝗊, 𝖭) ≤ κ𝖠𝖱𝖦(λ, 𝗊, 𝖭)



Example: 
Real-world compliance predicate with 
unbounded transcript size
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A real-world compliance predicate
• , a collision resistant hash function. 


• : a universal Turing machine. On input a program  and an input ,  outputs . 


•  a maximum time bound.  

h : {0,1}* → {0,1}λ

M P x M(P, x) P(x)

T ∈ ℕ

ϕh,M,T(z, w, ⊥ ) b ∈ {0,1}

Parse  as 

Parse  as 


z (y, t)
w (P, x)

b := (t ≤ T ∧ M(P, x) = y
∧ M(P, x) runs in t steps)

ϕh,M,T(z, w, (zi)i) b ∈ {0,1}

Parse  as 

Parse  as  for each i


z (y, t)
zi (yi, ti)

b := (t = 0 ∧ w = ⊥
∧ ∀i, ti ≤ T ∧ h((yi)i) = y)

No restriction on the size of the transcript!


•  can be arbitrarily large  prior works can not guarantee security.


• Our result shows that security of the underlying SNARK is inherited by the PCD without loss. 

𝖭 ⟹

Base case. Recursive case.
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Recursive STARKs
• Computation in Ethereum smart contract is expensive:


- Each computation step is re-executed by every node.


• Layer 2 proof-based rollups: move computation off-chain.


- User sends computation requests to an aggregator. 


- Aggregator produces a SNARK proof about batch of 
computations. 


- Ethereum smart contract verifiers the SNARK proof 
and update states.


• Aggregator: PCD prover.


• Ethereum smart contract: PCD verifier. 

P1, x1, t1 P2, x2, t2 P3, x3, t3 P4, x4, t4

((y2,1,0), ⊥ ) ((y2,2,0), ⊥ ) ((y2,3,0), ⊥ )

((y3,1,0), ⊥ ) ((y3,2,0), ⊥ )

((y4,1,0), ⊥ )

y1 := M(P1, x1)

Π1 ← ℙ(CV,ϕh,M,T
, (y1, t1), (P1, x1), ⊥ )

Π1 Π2 Π3 Π4

y2,1 := h(y1, y2)

Π2,1 ← ℙ(CV,ϕh,M,T
, (y2,1,0), ((y1, Π1), (y2, Π2)))

Π2,1 Π2,2 Π2,3

Π3,1 Π3,2

Π4,1


