Security Bounds for Proof-Carrying Data
from Straightline Extractors

Alessandro Chiesa, Ziyi Guan, Shahar Samocha, Eylon Yogev

TL;DR

What is proof-carrying data (PCD)?
- Recursive compositions of SNARKSs.
- It’s useful for efficiently verifying distributed computations.

Problem:
- PCD is deployed under the assumption "security of PCD" = "security of underlying SNARK".
- BUT existing security analyses show a huge gap in security ("PCD is far less secure than underlying SNARK").

This work:
- We propose an idealized PCD that models hash-based PCD in practice.
- We prove that this idealized PCD is as secure as its underlying SNARK.

Proof-carrying data (PCD)
- Enables mutually distrustful parties to perform a distributed computation _
- The correctness of each step can be verified efficiently A T A2 T A3 T A T A5 T 16

E.g. A simple distributed computation: summing six numbers 123456

What is proof-carrying data (PCD)? [2/2]

Proof-carrying data (PCD)
- Enables mutually distrustful parties to perform a distributed computation

- The correctness of each step can be verified efficiently

Output: z; Correctness of transcript 1 is determined by compliance predicate qb
- Node (2,3) is correct if (2, 3, Wy 3, (233, 23.4)) = 1.
- Tis ¢p)-compliant if all nodes are correct.

The proof string 11, 5 attests that:

- node (2,3) is correct, AND
- each child vertex of node (2,3) has a valid proof string.

PCD prover [P and PCD verifier V

(20,3: Wo 3) —»

((23,39 H3,3)9 (23,4, H3,4))’“ﬁ%

PCD transcript 1 for a distributed computation
with size N = 8 and depth D = 3

Security guarantee of PCD

Zout ™ P
- —» b e {0,1}
A: security parameter

Perfect completeness: [P can convince V of correct computations. T: computation transcript
D: maximum transcript depth

N: maximum transcript size

(Zouv Wout) b

(z;, 1) —»

Knowledge soundness: V bounded P, 3 an efficient extractor E s such that

py | Coue Tow) = 1 (s Zous Tou) < P
A T is not ¢p-compliant T < Ep

< k(4,D, N).

Not ¢@-compliant =
| Output: 7

out

Review: SNARK

PCD can be constructed from a SNARK (e.g., for CSAT).
CSAT ={({(C,x),w) : C(x,w) = 1}

((C,x), w) (C,x)

ARG = (Pprgs Vara) l

ARG | 77| very small ’

» Perfect completeness: Pyrg convinces Vrg if C(x, w) = 1.
- Knowledge soundness: V bounded Prg, 3 an efficient extractor £, such that

((C,x),w) & CSAT | (C,x,) < PARG

P < A).

((C,x),w) & CSAT
W ——

Naive approach: concatenate SNARK proofs

SNARK prover for compliance predicate ¢

(22,3, W) 3, (23,3, Z3,4)) —1T 4 70 3

(23,3: Wa 3) —»

(233,115 3), (23 45 115 4)) —P — Pl =m0 ([55] T 4

Issue: 11, 5 is NOT succinct (linear in number of vertices)

Working idea: Recursively compose the SNARK proofs

PCD formalizes the recursive proof composition of a SNARK:
- PCD prover and verifier invoke SNARK prover and verifier (for CSAT) for the recursive circuit C.

' <(.2), (W, (2, T1);) > —r

Canonical security analysis of PCD

15 T,

bt oottt bttt Non-black-box knowledge soundness is problematic:
Size of extractor |] size of extractor grows too quickly.
- | Pl = |k | + O(m') :}"Eﬁi‘ = tg(| P;])

C | < |E5s| + O(m' Finding a better analysis remains a MAJOR open problem in this area.
* |51 = 1 Ep m')
tr:n>n° = |Es| =0 < | ‘cD> Today: focus on PCD based on SNARKSs with "strong" extraction.

— | Ep | is polynomial only when D is constant. 9

Our result

Theorem. We prove a significantly improved security bound for PCD based on SNARKs with straightline extraction:

SNARK for CSAT Recursive proof composition

. . . . PCD with straightline extraction
with straightline extraction

K(/la qa Da N) S KARG(/L qa N)

Prior works
Recursive proof composition k(4,9,D,N) < exp(D) - kara(4, g, N)

SNARK for CSAT

No security when D is larger than constant.

In practice, SNARKs have non-black-box knowledge soundness.
Straightline extraction only exists in idealized models.
How can we apply our theorem in practice then?

10

Applications

Application 1 [main].
- We propose a new idealization of hash-based PCD used in practice as a “PCD” in the ROM.
- We apply our theorem: k(4, q, D, N) < karg(4, g, N) = karg(4, q)-

- First justification for current choice of parameters of hash-based PCD in practice! [Polygon, Sharp]

Application 2.
- [CT10]: SNARK with straightline extraction in the SROM (signed random oracle modéel).

- Their bound: k(4, q, D, N) < N - kxrg(4, g, N).
- Our bound: k(4, q, D, N) < karg(4, g, N).

Application 3.
- [CCGOS23]: SNARK with straightline extraction in the AROM (arithmetized random oracle model).

- Their bound: k(4,q, D,N) < N - kxrg(4, g, N).
- Our bound: k(4, q, D, N) < karg(4, g, N).

11

Recursive proof composition
with straightline extraction

SNARKSs with straightline extraction

SNARKS in an oracle model (e.g. ROM):
((Ca X),W) f (C, X) f

v

—» b e {0,1}

| 7z | very small
Straightline knowledge soundness: d a deterministic extractor E such that V bounded adversary P,

CSAT f U(/I) A: security parameter
Pr ((C, x)a W) ¢ (C X, 7[) Pf < KARG(/I) q: adversary gquery bound

AVI(C,x,7) =1
w «— E(C,x, x, tr)

(C,x),w) & CSAT
(C,x,m,tr)— —(C,x,m)—» —»hH =1

Wonderful Fact: in the ROM (and other interesting oracle models) there are SNARKSs of interest with straightline extraction!
(E.g., the Micali SNARK and BCS SNARK and related constructions.)

13

Can’t we use the previous recursive composition?

j <(C9 Z)a <W9 (Zia Hi)i)) I
: (z,w, (2);) —1?

(C,z,11,) —t»

ISSUE! C has oracle access to /.
Prg and V,rg need to prove computations involving oracle f.

14

Relativized SNARKSs in an oracle model

We need SNARK in the oracle model that can prove/verify for oracle relations
- Relativized SNARK!

CSAT = {((C.x),w) : C'(x,w) = 1}

Recursive proof composition

Relativized SNARK for CSAT/ PCD with straightline extraction

PCD straightline knowledge soundness: 3 a deterministic extractor E such that V bounded adversary P,
f < U
(¢ Zows o) <= P/ | < (2,0, N).
I' — (@, Zgup Hoye 1)

V(z. D) =1
A T is not ¢p-compatible

out?

Not ¢-compliant ey Py
| Output: 7 |

out

A: security parameter
N: maximum transcript size
g: adversary query bound

Zout P
| —ph =1

;: ‘———.*—. (¢’ ZOut’HOut’ tr) m

15

Concrete security of PCD
with straightline extraction

Construction of the PCD extractor

In general, PCD extractor is constructed by repeatedly invoking SNARK extractor.

(¢929H9tr) -.—_”} m—bT

Extraction queue 0

Parse WV] dsS (Wl, (Zz,l’ H(VZ,lvvl))lE[3])

Extraction queue Q -

(%9 1 Hz,la tr) - EARG - Dwvz,

1

17

Security analysis in previous works

A natural analysis gives us this bound: k(4, q, N) < N - kxrg(4, g, N)

 Each recursion pays the knowledge soundness error of the argument.

« The i-th extraction: invoking £ ,rg for a corresponding argument prover Pi.

Warning: the actual construction of Pi IS more
18 complicated. This is for intuitive explanation only.

Our security analysis [1/2]

T not ¢-compliant

— There is one vertex in T that is not ¢p)-compliant

Find such vertex in one pass and output it

— K(/L qa N) S KARG(/Ia qa N)

19

Our securlty anaIyS|s [2/2]

i <(C, 2), (W, (2;, Hi)i)) .o#

ARG -~ b Virs € {0,1}

"'. (C.z11) ~——1B
Extraction queue Q | v,
(6, z, I, tr)— P& —P>w,

Parse w, as (wy, (22 H(vz,i,vl))ieB]) ¢! (21, wy, (20,)icp3) 7 1 or
3i € [3] such that V/(z, ;, T,) # 12

Extraction queue QO -
(cg, Z2,19H2,1’tr)” T D@' T DWV2,1

Parse Wy, @s (W1, (23,1’ H(v3,1,v2,1)) ¢f(22,1, Ws 15 (23,1)) # lor (Z*a H*) L= (Z2,19 H2,1)

Vi(z, (. T 7 ™
(23,1 (v3,1aV2,1)) 7 \A = ((C’Z*)’ <W2’1, <Z3’1’H3’1>)) T
Yet V/(C, z*,IT*) = 1

Our theorem: k(4, g, D, N) < karg(4,q, N)

20

Application:
Set security for hash-based PCD

Warm-up: analyzing hash-based SNARKs

Three-step recipe:
Step 1. Model the hash function as "ideal": a random function.
- the hash-based SNARK is idealized as a SNARK in the random oracle model (ROM-SNARK).

Step 2. Establish concrete security bounds for the ROM-SNARK.
Step 3. Set security parameters of the hash-based SNARK accordingly.

Standard Model Random Oracle Model

Hash-based SNARK ldealize ROM-SNARK
—>
for CSAT for CSAT

Carefull! Idealization is applicable only for black-box use of the hash function.

Fortunately, applicable for the hash-based SNARKs we care about (e.g. Micali SNARK).

22

First attempt for idealization of hash-based PCD

PCDs are deployed based on various approaches. A popular approach is hash-based PCD.

Nevertheless, practitioners use hash-based PCD

as if it's as secure as the hash-based SNARK. (!!)

Standard Model Random Oracle Model

AN E-lel Recursive proof composition Hash-based SNARK |dealize ROM-SNARK

PCD ..Expensive security analysis for CSAT for CSAT
'('éx'tractp.r. blows up)

]
I~
......
Ny

Relativized SNARK for CSAT/ Recursive proof composition
with straightline extraction

PCD with straightline extraction

23

Second attempt for idealization of hash-based PCD

|dealization is applicable only for black-box use of the hash function - not true in general.
What we hope todo __ —

< ~ o - \G — g Y G S g - 3 S o Y n o - \G o o y NG a0 N - 2 - G Nk N - 2 A\ ~— N - 2 g Y \G — v - - =2 o Y v - - A\ — a
S oo v oz o o L A e e e o L o A e o B P PTG NPTy oz o P P P N P P O PP) P P I Sy 3} o A R e e e a o a7 PSS 7 P P P O P u P P Tr- Sr 0) N oo o A o a7 PPN
O\

).‘ Hash-based PCD cealze PCD in the ROM necursive proof composition Rele_ltivized_SNARK in the _ROM
| with straightline extraction

Our theorem: k(4, q, D, N) < kxrg(4,q, N) ',

o oo iy o i T min 8 oS i s AR o ot s i SN S SLARE . S N SSRGS A SN '.-— SRR T o~ e T V3 % W i SR B oS T VS R W OO O R o i o) LA:-«-«MM < S s e+t o T i A T e B e i £

{ I Not believed to exist! [VaI08 HN23] Not believed to exist! [CL20] N\
| Hash-based pcp MEEIEIN -1 i ihe Rov DIASHENIERWSeIUM Relativized SNARK in the ROM §
;; with straightline extraction _

Our theorem: K(A q,D N) < KARG(/I a N) \J

24

Our idealization for hash-based PCD

Issue: Hash-based PCD uses hash function in a non-black-box way.
Observation 1: PCD looks at hash function to check the correctness, it doesn’t “destroy” the hash function.

Observation 2: C is an oracle circuit because V,r5 make oracle queries.
Solution: Forward all the queries of C by asking P,rq to attach C’s “query-answer trace” in the proof.

A

Forwarding the queries makes
the proof non-succinct

Idealize NON-SUCCINCT Recursive proof composition NON-SUCCINCT

Hash-based PCD PCD in the ROM relativized NARK in the ROM
with straightline extraction with straightline extraction

25

Last step: relativized ROM-NARK

|dea: Given an oracle circuit, remove its oracle gate by attaching its “query-answer trace” to instance.

/ ARGI — (P19 Vl): '
| SNARK in the ROM |

lll

tr : .
(+) < Cf(X,/W) : (m,tr) i Check:
Construct C " P‘ V2 _ V{(C’, (x, tr),)

/ :
w<— P 1 (C 5 (X, tI'), W)“’: ‘... - tr correct

.
--

26

TL;DR

What is proof-carrying data (PCD)?
- Recursive compositions of SNARKSs.
- It’s useful for efficiently verifying distributed computations.

Problem:
- PCD is deployed under the assumption "security of PCD" = "security of underlying SNARK".
- BUT existing security analyses show a huge gap in security ("PCD is far less secure than underlying SNARK").

This work:
- We propose an idealized PCD that models hash-based PCD in practice.
- We prove that this idealized PCD is as secure as its underlying SNARK.

27

Thank you!
https://eprint.iacr.org/2023/1646

28

https://eprint.iacr.org/2023/1646

JTechnical extension:
Probabilistic straightline
extraction

Probabilistic straightline extraction

Probabilistic straightline knowledge soundness fo[SNARKS: |

J a probabilistic extractor E such that V bounded adversary P, A: security parameter

£ UQ) d: adversary query bound
((C,x),w) & CSAT

AVI(C,x,m) =1

Pr (C,x,7) — P < Karg(4s Q).

w «— E(C, x, &, tr)

PCD
with probabilistic straightline extraction

Relativized SNARK for CSAT/ Recursive proof composition

with probabilistic straightline extraction

PCD probabilistic straightline knowledge soundness: 3 a probabilistic extractor E such that V bounded adversary P,

; fe U@
Wiz, 1) =1 0~
P out’ I &f < /’t, , N).
' A T is not ¢h-compatible (9> 2w Tow) < P < (4. 0. N) A: security parameter
I' < E(@, zoy Hoyys 1) N: maximum transcript size

d: adversary query bound

30

Our security analysis

Theorem. We prove an improved security bound even for PCD based on SNARKs with probabilistic straightline extraction:

PCD
with probabilistic straightline extraction

SNARK for CSAT Recursive proof composition

with probabilistic straightline extraction

K(/la qa Da N) S N) KARG(ﬂa qa N)

The multiplicative factor N is tight:
- With probabilistic straightline extraction, at each node, £ pays for both the extraction error and the randomness error of E ,pg-

- If let € be the randomness error of £, g, it’s possible to show:
k(4,9,D,N) < karg(4,9,N) + N - €.

31

Application:
Improved concrete security for black-box
PCD constructions

PCD in the SROM

e Signed random oracle model (SROM):

- Oninput x, samples a random answer y, generates a signature ¢ on (x, y), and outputs (v, o).

- Repeated inputs have the same answer.
« [CT10]: SNARK in the ROM — SNARK in the SROM (preserves straightline extraction)
- The argument verifier doesn’t need to query the oracle: verify o is enough.
- [CT10] gives a bound (4, q, N) < N - kxrg(4, g, N).
- Our analysis improves it to k(4, q, N) < karg(4, g, N).

33

PCD in the AROM

* Arithmetized random oracle model (AROM)j:

- A random oracle: idealization of a concrete hash function /:

- An arithmetization oracle: idealization of a low degree polynomial that encodes the circuit of A.

o« [CCGOS22]: SNARK in the ROM — SNARK in the AROM (preserves straightline extraction)

- Queries in the AROM can be accumulated.
- [CCGOS22] gives a bound k(4,q,N) < N - ksp5(4, g, N).

- Our analysis improves it to k(4, g, N) < karg(4, g, N).

34

Example:
Real-world compliance predicate with
unbounded transcript size

A real-world compliance predicate

« h:{0,1}* = {0,1}* a collision resistant hash function.
e M: a universal Turing machine. On input a program P and an input x, M(P, x) outputs P(x).

« T & N amaximum time bound.

lll
L L 4
* L 4

+ Base case.

zw, L)—
Parse z as (y, 1) Parse z as (y, 1)

Parse w as (P, x) Parse z; as (y,, ;) for each i

po= (TSTAMED)=) : L, _(1=0Aw=1

LA M(P, x) runs in t steps "\ AV, t. <TAK(®»),) =Y

L 4

........
--

No restriction on the size of the transcript!

* N can be arbitrarily large = prior works can not guarantee security.

* Qur result shows that security of the underlying SNARK is inherited by the PCD without loss.

36

Recursive STARKSs

4,1

 Computation in Ethereum smart contract is expensive:
- Each computation step is re-executed by every node.

((V41,0), L) Layer 2 proof-based rollups: move computation off-chain.

- User sends computation requests to an aggregator.

H3,1 H3,2

- Aggregator produces a SNARK proof about batch of

computations.
(()’3,1,0), J—) (()’3,2,0), J—)
- Ethereum smart contract verifiers the SNARK proof

I, , and update states.
I, « P(Cyy, ,» 0210, (1, 11y), (0, 115)))

Va1 = h(yp, ¥,)

11, 1
> Aggregator: PCD prover.

e Ethereum smart contract: PCD verifier.

((v2,1,0), L) ((02,2:0), 1) ((y,3,0), L)

I,

y1 = M(Py, x))
Hl N H:D(CV,gbh’M’Ta ()’1, tl)a (Plaxl)a J—) 37

