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TL;DR

What is proof-carrying data (PCD)?
- Recursive compositions of SNARKSs.
- It’s useful for efficiently verifying distributed computations.

Problem:
- PCD is deployed under the assumption "security of PCD" = "security of underlying SNARK".
- BUT existing security analyses show a huge gap in security ("PCD is far less secure than underlying SNARK").

This work:
- We propose an idealized PCD that models hash-based PCD in practice.
- We prove that this idealized PCD is as secure as its underlying SNARK.



Proof-carrying data (PCD)
- Enables mutually distrustful parties to perform a distributed computation _
- The correctness of each step can be verified efficiently A T A2 T A3 T A T A5 T 16

E.g. A simple distributed computation: summing six numbers 123456




What is proof-carrying data (PCD)? [2/2]

Proof-carrying data (PCD)
- Enables mutually distrustful parties to perform a distributed computation

- The correctness of each step can be verified efficiently

Output: z; Correctness of transcript 1 is determined by compliance predicate qb
- Node (2,3) is correct if (2, 3, Wy 3, (233, 23.4)) = 1.
- Tis ¢p)-compliant if all nodes are correct.

The proof string 11, 5 attests that:

- node (2,3) is correct, AND
- each child vertex of node (2,3) has a valid proof string.

PCD prover [P and PCD verifier V

(20,3: Wo 3) —»

((23,39 H3,3)9 (23,4, H3,4))’“ﬁ%

PCD transcript 1 for a distributed computation
with size N = 8 and depth D = 3



Security guarantee of PCD

Zout ™ P
- —» b e {0,1}
A: security parameter

Perfect completeness: [P can convince V of correct computations. T: computation transcript
D: maximum transcript depth

N: maximum transcript size

(Zouv Wout) b

(z;, 1) —»

Knowledge soundness: V bounded P, 3 an efficient extractor E s such that

py | Coue Tow) = 1 (s Zous Tou) < P
A T is not ¢p-compliant T < Ep

< k(4,D, N).

Not ¢@-compliant =
| Output: 7

out




Review: SNARK

PCD can be constructed from a SNARK (e.g., for CSAT).
CSAT ={({(C,x),w) : C(x,w) = 1}

((C,x), w) (C,x)

ARG = (Pprgs Vara) l

ARG | 77| very small ’

» Perfect completeness: Pyrg convinces Vrg if C(x, w) = 1.
- Knowledge soundness: V bounded Prg, 3 an efficient extractor £, such that

((C,x),w) & CSAT | (C,x, ) < PARG

P < A).

((C,x),w) & CSAT
W ——




Naive approach: concatenate SNARK proofs

SNARK prover for compliance predicate ¢

(22,3, W) 3, (23,3, Z3,4)) —1T 4 70 3

(23,3: Wa 3) —»

(233,115 3), (23 45 115 4)) —P — Pl =m0 ([ 55 ] T 4

Issue: 11, 5 is NOT succinct (linear in number of vertices)



Working idea: Recursively compose the SNARK proofs

PCD formalizes the recursive proof composition of a SNARK:
- PCD prover and verifier invoke SNARK prover and verifier (for CSAT) for the recursive circuit C.

' <( .2), (W, (2, T1);) > —r




Canonical security analysis of PCD

15 T,

bt oottt bttt Non-black-box knowledge soundness is problematic:
Size of extractor | ] size of extractor grows too quickly.
- | Pl = |k | + O(m') :}"Eﬁi‘ = tg(| P;])

C | < |E5s| + O(m' Finding a better analysis remains a MAJOR open problem in this area.
* |51 = 1 Ep m')
tr:n>n° = |Es| =0 < | ‘cD> Today: focus on PCD based on SNARKSs with "strong" extraction.

— | Ep | is polynomial only when D is constant. 9




Our result

Theorem. We prove a significantly improved security bound for PCD based on SNARKs with straightline extraction:

SNARK for CSAT Recursive proof composition

. . . . PCD with straightline extraction
with straightline extraction

K(/la qa Da N) S KARG(/L qa N)

Prior works
Recursive proof composition k(4,9,D,N) < exp(D) - kara(4, g, N)

SNARK for CSAT

No security when D is larger than constant.

In practice, SNARKs have non-black-box knowledge soundness.
Straightline extraction only exists in idealized models.
How can we apply our theorem in practice then?
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Applications

Application 1 [main].
- We propose a new idealization of hash-based PCD used in practice as a “PCD” in the ROM.
- We apply our theorem: k(4, q, D, N) < karg(4, g, N) = karg(4, q)-

- First justification for current choice of parameters of hash-based PCD in practice! [Polygon, Sharp]

Application 2.
- [CT10]: SNARK with straightline extraction in the SROM (signed random oracle modéel).

- Their bound: k(4, q, D, N) < N - kxrg(4, g, N).
- Our bound: k(4, q, D, N) < karg(4, g, N).

Application 3.
- [CCGOS23]: SNARK with straightline extraction in the AROM (arithmetized random oracle model).

- Their bound: k(4,q, D,N) < N - kxrg(4, g, N).
- Our bound: k(4, q, D, N) < karg(4, g, N).

11



Recursive proof composition
with straightline extraction




SNARKSs with straightline extraction

SNARKS in an oracle model (e.g. ROM):
((Ca X),W) f (C, X) f

v

—» b e {0,1}

| 7z | very small
Straightline knowledge soundness: d a deterministic extractor E such that V bounded adversary P,

CSAT f U(/I) A: security parameter
Pr ((C, x)a W) ¢ (C X, 7[) Pf < KARG(/I ) q: adversary gquery bound

AVI(C,x,7) =1
w «— E(C,x, x, tr)

(C,x),w) & CSAT
(C,x,m,tr)— —(C,x,m)—» —»hH =1

Wonderful Fact: in the ROM (and other interesting oracle models) there are SNARKSs of interest with straightline extraction!
(E.g., the Micali SNARK and BCS SNARK and related constructions.)
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Can’t we use the previous recursive composition?

j <(C9 Z)a <W9 (Zia Hi)i) ) I
: (z,w, (2);) —1?

(C,z,11,) —t»

ISSUE! C has oracle access to /.
Prg and V,rg need to prove computations involving oracle f.

14



Relativized SNARKSs in an oracle model

We need SNARK in the oracle model that can prove/verify for oracle relations
- Relativized SNARK!

CSAT = {((C.x),w) : C'(x,w) = 1}

Recursive proof composition

Relativized SNARK for CSAT/ PCD with straightline extraction

PCD straightline knowledge soundness: 3 a deterministic extractor E such that V bounded adversary P,
f < U
(¢ Zows o) <= P/ | < (2,0, N).
I' — (@, Zgup Hoye 1)

V(z. D) =1
A T is not ¢p-compatible

out?

Not ¢-compliant ey Py
| Output: 7 |

out

A: security parameter
N: maximum transcript size
g: adversary query bound

Zout P
| —ph =1

;: ‘———.*—. (¢’ ZOut’HOut’ tr) m
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Concrete security of PCD
with straightline extraction




Construction of the PCD extractor

In general, PCD extractor is constructed by repeatedly invoking SNARK extractor.

(¢929H9tr) -.—_”} m—bT

Extraction queue 0

Parse WV] dsS (Wl, (Zz,l’ H(VZ,lvvl))lE[3])

Extraction queue Q -

(%9 1 Hz,la tr) - EARG - Dwvz,

1
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Security analysis in previous works

A natural analysis gives us this bound: k(4, q, N) < N - kxrg(4, g, N)

 Each recursion pays the knowledge soundness error of the argument.

« The i-th extraction: invoking £ ,rg for a corresponding argument prover Pi.

Warning: the actual construction of Pi IS more
18 complicated. This is for intuitive explanation only.



Our security analysis [1/2]

T not ¢-compliant

— There is one vertex in T that is not ¢p)-compliant

Find such vertex in one pass and output it

— K(/L qa N) S KARG(/Ia qa N)
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Our securlty anaIyS|s [2/2]

i <(C, 2), (W, (2;, Hi)i) ) .o#

ARG -~ b Virs € {0,1}

"'. (C.z11) ~——1B
Extraction queue Q | v,
(6, z, I, tr)— P& —P>w,

Parse w, as (wy, (22 H(vz,i,vl))ieB]) ¢! (21, wy, (20,)icp3) 7 1 or
3i € [3] such that V/(z, ;, T, ) # 12

Extraction queue QO -
(cg, Z2,19H2,1’tr)” T D@' T DWV2,1

Parse Wy, @s (W1, (23,1’ H(v3,1,v2,1)) ¢f(22,1, Ws 15 (23,1)) # lor (Z*a H*) L= (Z2,19 H2,1)

Vi(z, (. T 7 ™
(23,1 (v3,1aV2,1)) 7 \A = ((C’Z*)’ <W2’1, <Z3’1’H3’1>)) T
Yet V/(C, z*,IT*) = 1

Our theorem: k(4, g, D, N) < karg(4,q, N)
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Application:
Set security for hash-based PCD




Warm-up: analyzing hash-based SNARKs

Three-step recipe:
Step 1. Model the hash function as "ideal": a random function.
- the hash-based SNARK is idealized as a SNARK in the random oracle model (ROM-SNARK).

Step 2. Establish concrete security bounds for the ROM-SNARK.
Step 3. Set security parameters of the hash-based SNARK accordingly.

Standard Model Random Oracle Model

Hash-based SNARK ldealize ROM-SNARK
—>
for CSAT for CSAT

Carefull! Idealization is applicable only for black-box use of the hash function.

Fortunately, applicable for the hash-based SNARKs we care about (e.g. Micali SNARK).

22



First attempt for idealization of hash-based PCD

PCDs are deployed based on various approaches. A popular approach is hash-based PCD.

Nevertheless, practitioners use hash-based PCD

as if it's as secure as the hash-based SNARK. (!!)

Standard Model Random Oracle Model

AN E-lel Recursive proof composition Hash-based SNARK |dealize ROM-SNARK

PCD ..Expensive security analysis for CSAT for CSAT
'('éx'tractp.r. blows up)

]
I~
......
Ny

Relativized SNARK for CSAT/ Recursive proof composition
with straightline extraction

PCD with straightline extraction
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Second attempt for idealization of hash-based PCD

|dealization is applicable only for black-box use of the hash function - not true in general.
What we hope todo __ —

< ~ o - \G — g Y G S g - 3 S o Y n o - \G o o y NG a0 N - 2 - G Nk N - 2 A\ ~— N - 2 g Y \G — v - - =2 o Y v - - A\ — a
S oo v oz o o L A e e e o L o A e o B P PTG NPTy oz o P P P N P P O PP ) P P I Sy 3} o A R e e e a o a7 PSS 7 P P P O P u P P Tr- Sr 0) N oo o A o a7 PPN
O\

).‘ Hash-based PCD cealze PCD in the ROM necursive proof composition Rele_ltivized_SNARK in the _ROM
| with straightline extraction

Our theorem: k(4, q, D, N) < kxrg(4,q, N) ',

o oo iy o i T min 8 oS i s AR o ot s i SN S SLARE . S N SSRGS A SN '.-— SRR T o~ e T V3 % W i SR B oS T VS R W OO O R o i o) LA:-«-«MM < S s e+t o T i A T e B e i £

{ I Not believed to exist! [VaI08 HN23] Not believed to exist! [CL20] N\
| Hash-based pcp MEEIEIN -1 i ihe Rov DIASHENIERWSeIUM Relativized SNARK in the ROM  §
;; with straightline extraction _

Our theorem: K(A q,D N) < KARG(/I a N) \J
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Our idealization for hash-based PCD

Issue: Hash-based PCD uses hash function in a non-black-box way.
Observation 1: PCD looks at hash function to check the correctness, it doesn’t “destroy” the hash function.

Observation 2: C is an oracle circuit because V,r5 make oracle queries.
Solution: Forward all the queries of C by asking P,rq to attach C’s “query-answer trace” in the proof.

A

Forwarding the queries makes
the proof non-succinct

Idealize NON-SUCCINCT Recursive proof composition NON-SUCCINCT

Hash-based PCD PCD in the ROM relativized NARK in the ROM
with straightline extraction with straightline extraction
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Last step: relativized ROM-NARK

|dea: Given an oracle circuit, remove its oracle gate by attaching its “query-answer trace” to instance.

/ ARGI — (P19 Vl): '
| SNARK in the ROM |

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

tr : .
(+) < Cf(X,/W) : (m,tr) i Check:
Construct C " P‘ V2 _ V{(C’, (x, tr), )

/ :
w<— P 1 (C 5 (X, tI'), W)“’: ‘... - tr correct

.
----------------------------------------------------------------------------------
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TL;DR

What is proof-carrying data (PCD)?
- Recursive compositions of SNARKSs.
- It’s useful for efficiently verifying distributed computations.

Problem:
- PCD is deployed under the assumption "security of PCD" = "security of underlying SNARK".
- BUT existing security analyses show a huge gap in security ("PCD is far less secure than underlying SNARK").

This work:
-  We propose an idealized PCD that models hash-based PCD in practice.
- We prove that this idealized PCD is as secure as its underlying SNARK.
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Thank you!
https://eprint.iacr.org/2023/1646
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https://eprint.iacr.org/2023/1646

JTechnical extension:
Probabilistic straightline
extraction




Probabilistic straightline extraction

Probabilistic straightline knowledge soundness fo[ SNARKS: |

J a probabilistic extractor E such that V bounded adversary P, A: security parameter

£ UQ) d: adversary query bound
((C,x),w) & CSAT

AVI(C,x,m) =1

Pr (C,x,7) — P < Karg(4s Q).

w «— E(C, x, &, tr)

PCD
with probabilistic straightline extraction

Relativized SNARK for CSAT/ Recursive proof composition

with probabilistic straightline extraction

PCD probabilistic straightline knowledge soundness: 3 a probabilistic extractor E such that V bounded adversary P,

; fe U@
Wiz, 1) =1 0~
P out’ I &f < /’t, , N).
' A T is not ¢h-compatible (9> 2w Tow) < P < (4. 0. N) A: security parameter
I' < E(@, zoy Hoyys 1) N: maximum transcript size

d: adversary query bound
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Our security analysis

Theorem. We prove an improved security bound even for PCD based on SNARKs with probabilistic straightline extraction:

PCD
with probabilistic straightline extraction

SNARK for CSAT Recursive proof composition

with probabilistic straightline extraction

K(/la qa Da N) S N ) KARG(ﬂa qa N)

The multiplicative factor N is tight:
- With probabilistic straightline extraction, at each node, £ pays for both the extraction error and the randomness error of E ,pg-

- If let € be the randomness error of £, g, it’s possible to show:
k(4,9,D,N) < karg(4,9,N) + N - €.
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Application:
Improved concrete security for black-box
PCD constructions



PCD in the SROM

e Signed random oracle model (SROM):

- Oninput x, samples a random answer y, generates a signature ¢ on (x, y), and outputs (v, o).

- Repeated inputs have the same answer.
« [CT10]: SNARK in the ROM — SNARK in the SROM (preserves straightline extraction)
- The argument verifier doesn’t need to query the oracle: verify o is enough.
- [CT10] gives a bound (4, q, N) < N - kxrg(4, g, N).
- Our analysis improves it to k(4, q, N) < karg(4, g, N).
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PCD in the AROM

* Arithmetized random oracle model (AROM)j:

- A random oracle: idealization of a concrete hash function /:

- An arithmetization oracle: idealization of a low degree polynomial that encodes the circuit of A.

o« [CCGOS22]: SNARK in the ROM — SNARK in the AROM (preserves straightline extraction)

- Queries in the AROM can be accumulated.
- [CCGOS22] gives a bound k(4,q,N) < N - ksp5(4, g, N).

- Our analysis improves it to k(4, g, N) < karg(4, g, N).
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Example:
Real-world compliance predicate with
unbounded transcript size



A real-world compliance predicate

« h:{0,1}* = {0,1}* a collision resistant hash function.
e M: a universal Turing machine. On input a program P and an input x, M(P, x) outputs P(x).

« T & N amaximum time bound.

lllllllllllllllllllllllllllllllllllllllllllllllllllllll
L L 4
* L 4

+ Base case.

zw, L)—
Parse z as (y, 1) Parse z as (y, 1)

Parse w as (P, x) Parse z; as (y,, ;) for each i

po= (TSTAMED)=) : L, _(1=0Aw=1

LA M(P, x) runs in t steps "\ AV, t. <TAK(®»),) =Y

L 4

........
----------------------------------------------------------------------------------------------------------

No restriction on the size of the transcript!

* N can be arbitrarily large = prior works can not guarantee security.

* Qur result shows that security of the underlying SNARK is inherited by the PCD without loss.
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Recursive STARKSs

4,1

 Computation in Ethereum smart contract is expensive:
- Each computation step is re-executed by every node.

((V41,0), L)  Layer 2 proof-based rollups: move computation off-chain.

- User sends computation requests to an aggregator.

H3,1 H3,2

- Aggregator produces a SNARK proof about batch of

computations.
(()’3,1,0), J— ) (()’3,2,0), J— )
- Ethereum smart contract verifiers the SNARK proof

I, , and update states.
I, « P(Cyy, ,» 0210, (1, 11y), (0, 115)))

Va1 = h(yp, ¥,)

11, 1
>  Aggregator: PCD prover.

e Ethereum smart contract: PCD verifier.

((v2,1,0), L) ((02,2:0), 1) ((y,3,0), L)

I,

y1 = M(Py, x))
Hl N H:D(CV,gbh’M’Ta ()’1, tl)a (Plaxl)a J— ) 37



